429 research outputs found

    Dark Matter Halo Structure in CDM Hydrodynamical Simulations

    Full text link
    We have carried out a comparative analysis of the properties of dark matter halos in N-body and hydrodynamical simulations. We analyze their density profiles, shapes and kinematical properties with the aim of assessing the effects that hydrodynamical processes might produce on the evolution of the dark matter component. The simulations performed allow us to reproduce dark matter halos with high resolution, although the range of circular velocities is limited. We find that for halos with circular velocities of [150−200]kms−1[150-200] km s^{-1} at the virial radius, the presence of baryons affects the evolution of the dark matter component in the central region modifying the density profiles, shapes and velocity dispersions. We also analyze the rotation velocity curves of disk-like structures and compare them with observational results.Comment: 28 pages, 15 figures (figures 3ab sent by request), 2 tables. Accepted for publication MNRA

    SPH simulations of the chemical evolution of bulges

    Full text link
    We have implemented a chemical evolution model on the parallel AP3M+SPH DEVA code which we use to perform high resolution simulations of spiral galaxy formation. It includes feedback by SNII and SNIa using the Qij matrix formalism. We also include a diffusion mechanism that spreads newly introduced metals. The gas cooling rate depends on its specific composition. We study the stellar populations of the resulting bulges finding a potential scenario where they seem to be composed of two populations: an old, metal poor, α\alpha-enriched population, formed in a multiclump scenario at the beginning of the simulation and a younger one, formed by slow accretion of satellites or gas, possibly from the disk due to instabilities.Comment: 2 pages, 3 figures. Proceedings of IAUS 245 "Formation and Evolution of Galaxy Bulges

    Large Scale Morphological Segregation in Optically Selected Galaxy Redshift Catalogs

    Full text link
    We present the results of an exhaustive analysis of the morphological segregation of galaxies in the CfA and SSRS catalogs through the scaling formalism. Morphological segregation between ellipticals and spirals has been detected at scales up to 15-20 h−1^{-1} Mpc in the CfA catalog, and up to 20-30 h−1^{-1} Mpc in the SSRS catalog. Moreover, it is present not only in the densest areas of the galaxy distribution, but also in zones of moderate density.Comment: 9 pages, (1 figure included), uuencode compressed Postscript, (accepted for publication in ApJ Letters), FTUAM-93-2

    Lagrangian Volume Deformations around Simulated Galaxies

    Full text link
    We present a detailed analysis of the local evolution of 206 Lagrangian Volumes (LVs) selected at high redshift around galaxy seeds, identified in a large-volume Λ\Lambda cold dark matter (Λ\LambdaCDM) hydrodynamical simulation. The LVs have a mass range of 1−1500×1010M⊙1 - 1500 \times 10^{10} M_\odot. We follow the dynamical evolution of the density field inside these initially spherical LVs from z=10z=10 up to zlow=0.05z_{\rm low} = 0.05, witnessing highly non-linear, anisotropic mass rearrangements within them, leading to the emergence of the local cosmic web (CW). These mass arrangements have been analysed in terms of the reduced inertia tensor IijrI_{ij}^r, focusing on the evolution of the principal axes of inertia and their corresponding eigendirections, and paying particular attention to the times when the evolution of these two structural elements declines. In addition, mass and component effects along this process have also been investigated. We have found that deformations are led by dark matter dynamics and they transform most of the initially spherical LVs into prolate shapes, i.e. filamentary structures. An analysis of the individual freezing-out time distributions for shapes and eigendirections shows that first most of the LVs fix their three axes of symmetry (like a skeleton) early on, while accretion flows towards them still continue. Very remarkably, we have found that more massive LVs fix their skeleton earlier on than less massive ones. We briefly discuss the astrophysical implications our findings could have, including the galaxy mass-morphology relation and the effects on the galaxy-galaxy merger parameter space, among others.Comment: 23 pages, 20 figures. Minor editorial improvement
    • …
    corecore