16 research outputs found

    De Novo Mutations in GNAO1, Encoding a Gαo Subunit of Heterotrimeric G Proteins, Cause Epileptic Encephalopathy

    Get PDF
    Heterotrimeric G proteins, composed of α, β, and γ subunits, can transduce a variety of signals from seven-transmembrane-type receptors to intracellular effectors. By whole-exome sequencing and subsequent mutation screening, we identified de novo heterozygous mutations in GNAO1, which encodes a Gαo subunit of heterotrimeric G proteins, in four individuals with epileptic encephalopathy. Two of the affected individuals also showed involuntary movements. Somatic mosaicism (approximately 35% to 50% of cells, distributed across multiple cell types, harbored the mutation) was shown in one individual. By mapping the mutation onto three-dimensional models of the Gα subunit in three different complexed states, we found that the three mutants (c.521A>G [p.Asp174Gly], c.836T>A [p.Ile279Asn], and c.572_592del [p.Thr191_Phe197del]) are predicted to destabilize the Gα subunit fold. A fourth mutant (c.607G>A), in which the Gly203 residue located within the highly conserved switch II region is substituted to Arg, is predicted to impair GTP binding and/or activation of downstream effectors, although the p.Gly203Arg substitution might not interfere with Gα binding to G-protein-coupled receptors. Transient-expression experiments suggested that localization to the plasma membrane was variably impaired in the three putatively destabilized mutants. Electrophysiological analysis showed that Gαo-mediated inhibition of calcium currents by norepinephrine tended to be lower in three of the four Gαo mutants. These data suggest that aberrant Gαo signaling can cause multiple neurodevelopmental phenotypes, including epileptic encephalopathy and involuntary movements

    Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex

    No full text
    γ-Aminobutyric acid (GABA) depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR) contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP) to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose-response properties of cells labeled to detect GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidino)ethanesulfonic acid (GES), and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB), as examined through high-performance liquid chromatography (HPLC). GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the developing neocortex

    A Newly Cloned ClC-3 Isoform, ClC-3d, as well as ClC-3a Mediates Cd2+-Sensitive Outwardly Rectifying Anion Currents

    No full text
    Background: ClC-3, a member of the ClC family, is predicted to have six isoforms, ClC-3a to -3f, with distinct N- and C-terminal amino acid sequences. There have been conflicting reports on the properties of ClC-3a (also known as the N-terminal short form of ClC-3) and ClC-3b (the N-terminal long form of ClC-3) as plasmalemmal Cl- channels. Meanwhile, little is known about other isoforms. The amino acid sequence of ClC-3d (a C-terminal variant of the short form) listed in the NCBI database was derived from the genomic sequence, but there has been no experimental evidence for the mRNA. Methods: PCR-cloning was made to obtain the full coding region of ClC-3d from mouse liver. Its molecular expression on the plasma membrane was microscopically examined in HEK293T cells transfected with GFP-tagged ClC-3d. Its functional plasmalemmal expression and the properties of currents were studies by whole-cell recordings in the cells transfected with ClC-3d. Results: The cloned ClC-3d was found to be the only isoform which has an N-terminal amino acid sequence identical to ClC-3a. When introduced into HEK293T cells, a minor fraction of exogenous ClC-3d proteins was detected at the plasma membrane, and activation of anion currents was observed at neutral pH under normotonic conditions. The properties of ClC-3d currents were found to be shared by ClC-3a-mediated currents. Also, both ClC-3d and -3a currents were found to be sensitive to Cd2+. ClC-3d overexpression never affected the endogenous activity of acid- or swelling-activated anion channels. Conclusion: We thus conclude that plasmalemmal ClC-3d, like ClC-3a, mediates Cd2+-sensitive outwardly rectifying anion currents and that ClC-3d is distinct from the molecular entities of acid- and volume-sensitive anion channels

    Ion channels, guidance molecules, intracellular signaling and transcription factors regulating nervous and vascular system development

    No full text
    Our sophisticated thoughts and behaviors are based on the miraculous development of our complex nervous network system, in which many different types of proteins and signaling cascades are regulated in a temporally and spatially ordered manner. Here we review our recent attempts to grasp the principles of nervous system development in terms of general cellular phenomena and molecules, such as volume-regulated anion channels, intracellular Ca2+ and cyclic nucleotide signaling, the Npas4 transcription factor and the FLRT family of axon guidance molecules. We also present an example illustrating that the same FLRT family may regulate the development of vascular networks as well. The aim of this review is to open up new vistas for understanding the intricacy of nervous and vascular system development

    Alterations of GABAergic Neuron-Associated Extracellular Matrix and Synaptic Responses in Gad1-Heterozygous Mice Subjected to Prenatal Stress

    No full text
    Exposure to prenatal stress (PS) and mutations in Gad1, which encodes GABA synthesizing enzyme glutamate decarboxylase (GAD) 67, are the primary risk factors for psychiatric disorders associated with abnormalities in parvalbumin (PV)-positive GABAergic interneurons in the medial prefrontal cortex (mPFC). Decreased expression of extracellular matrix (ECM) glycoproteins has also been reported in patients with these disorders, raising the possibility that ECM abnormalities may play a role in their pathogenesis. To elucidate pathophysiological changes in ECM induced by the gene–environment interaction, we examined heterozygous GAD67-GFP (Knock-In KI; GAD67+/GFP) mice subjected to PS from embryonic day 15.0 to 17.5. Consistent with our previous study, we confirmed a decrease in the density of PV neurons in the mPFC of postnatal GAD67+/GFP mice with PS, which was concurrent with a decrease in density of PV neurons surrounded by perineuronal nets (PNNs), a specialized ECM important for the maturation, synaptic stabilization and plasticity of PV neurons. Glycosylation of α-dystroglycan (α-DG) and its putative mediator fukutin (Fktn) in the ECM around inhibitory synapses has also been suggested to contribute to disease development. We found that both glycosylated α-DG and the mRNA level of Fktn were reduced in GAD67+/GFP mice with PS. None of these changes were detected in GAD67+/GFP naive mice or wild type (GAD67+/+) mice with PS, suggesting that both PS and reduced Gad1 gene expression are prerequisites for these changes. When assessing the function of interneurons in the mPFC of GAD67+/GFP mice with PS through evoked inhibitory post-synaptic currents (eIPSCs) in layer V pyramidal neurons, we found that the threshold stimulus intensity for eIPSC events was reduced and that the eIPSC amplitude was increased without changes in the paired-pulse ratio (PPR). Moreover, the decay rate of eIPSCs was also slowed. In line with eIPSC, spontaneous IPSC (sIPSC) amplitude, frequency and decay tau were altered. Thus, our study suggests that alterations in the ECM mediated by gene-environment interactions might be linked to the enhanced and prolonged GABA action that compensates for the decreased density of PV neurons. This might be one of the causes of the excitatory/inhibitory imbalance in the mPFC of psychiatric patients

    Ca2+-dependent inactivation of Ca2+-induced Ca2+ release in bullfrog sympathetic neurons

    No full text
    We studied inactivation of Ca2+-induced Ca2+ release (CICR) via ryanodine receptors (RyRs) in bullfrog sympathetic neurons. The rate of rise in [Ca2+]i due to CICR evoked by a depolarizing pulse decreased markedly within 10–20 ms to a much slower rate despite persistent Ca2+ entry and little depletion of Ca2+ stores. The Ca2+ entry elicited by the subsequent pulse within 50 ms, during which the [Ca2+]i level remained unchanged, did not generate a distinct [Ca2+]i rise. This mode of [Ca2+]i rise was unaffected by a mitochondrial uncoupler, carbonyl cyanide p-trifluromethoxy-phenylhydrazone (FCCP, 1 μm). Paired pulses of varying interval and duration revealed that recovery from inactivation became distinct ≥ 50 ms after depolarization and depended on [Ca2+]i. The inactivation was prevented by BAPTA (≥ 100 μm) but not by EGTA (≤ 10 mm), whereas the activation was less affected by BAPTA. When CICR was partially activated, some of the non-activated RyRs were also inactivated directly. Thus, the inactivation in these neurons is induced by Ca2+ binding to the high-affinity regulatory sites residing very close to Ca2+ channels and/or RyRs, although the sites for activation are located much closer to those Ca2+ sources. The rate of [Ca2+]i decay after the pulse decreased with increasing pulse duration longer than 10 ms, and this was abolished by BAPTA. Thus, some mechanism counteracting Ca2+ clearance is induced after full inactivation and potentiated during the pulse. Possible models for RyR inactivation were proposed and the roles of inactivation in Ca2+ signalling were discussed
    corecore