68 research outputs found

    Conformal proper times according to the Woodhouse causal axiomatics of relativistic spacetimes

    Full text link
    On the basis of the Woodhouse causal axiomatics, we show that conformal proper times and an extra variable in addition to those of space and time, precisely and physically identified from experimental examples, together give a physical justification for the `chronometric hypothesis' of general relativity. Indeed, we show that, with a lack of these latter two ingredients, no clock paradox solution exists in which the clock and message functions are solely at the origin of the asymmetry. These proper times originate from a given conformal structure of the spacetime when ascribing different compatible projective structures to each Woodhouse particle, and then, each defines a specific Weylian sheaf structure. In addition, the proper time parameterizations, as two point functions, cannot be defined irrespective of the processes in the relative changes of physical characteristics. These processes are included via path-dependent conformal scale factors, which act like sockets for any kind of physical interaction and also represent the values of the variable associated with the extra dimension. As such, the differential aging differs far beyond the first and second clock effects in Weyl geometries, with the latter finally appearing to not be suitable.Comment: 25 pages, 2 figure

    Massive expansion of SCA2 with autonomic dysfunction, retinitis pigmentosa, and infantile spasms

    Get PDF
    OBJECTIVE: To provide clinical data on a cohort of 6 patients with massive expansion (>200 CAG repeats) of spinocerebellar ataxia type 2 (SCA2) and investigate possible pathways of pathogenesis using bioinformatics analysis of ATXN2 networks. METHODS: We present data on 6 patients with massive expansion of SCA2 who presented in infancy with variable combinations of hypotonia, global developmental delay, infantile spasms, and retinitis pigmentosa. ATXN2 is known to interact with a network of synaptic proteins. To investigate pathways of pathogenesis, we performed bioinformatics analysis on ATXN2 combined with known genes associated with infantile spasms, retinitis pigmentosa, and synaptic function. RESULTS: All patients had a progressive encephalopathy with autonomic dysfunction, 4 had retinitis pigmentosa, and 3 had infantile spasms. The bioinformatics analysis led to several interesting findings. First, an interaction between ATXN2 and SYNJ1 may account for the development of retinitis pigmentosa. Second, dysfunction of postsynaptic vesicle endocytosis may be important in children with this progressive encephalopathy. Infantile spasms may be associated with interactions between ATXN2 and the postsynaptic structural proteins MAGI2 and SPTAN1. CONCLUSIONS: Severe phenotype in children with massive expansion of SCA2 may be due to a functional deficit in protein networks in the postsynapse, specifically involving vesicle endocytosis

    Health care's response to climate change: a carbon footprint assessment of the NHS in England

    Get PDF
    Background: Climate change threatens to undermine the past 50 years of gains in public health. In response, the National Health Service (NHS) in England has been working since 2008 to quantify and reduce its carbon footprint. This Article presents the latest update to its greenhouse gas accounting, identifying interventions for mitigation efforts and describing an approach applicable to other health systems across the world. Methods: A hybrid model was used to quantify emissions within Scopes 1, 2, and 3 of the Greenhouse Gas Protocol, as well as patient and visitor travel emissions, from 1990 to 2019. This approach complements the broad coverage of top-down economic modelling with the high accuracy of bottom-up data wherever available. Available data were backcasted or forecasted to cover all years. To enable the identification of measures to reduce carbon emissions, results were disaggregated by organisation type. Findings: In 2019, the health service's emissions totalled 25 megatonnes of carbon dioxide equivalent, a reduction of 26% since 1990, and a decrease of 64% in the emissions per inpatient finished admission episode. Of the 2019 footprint, 62% came from the supply chain, 24% from the direct delivery of care, 10% from staff commute and patient and visitor travel, and 4% from private health and care services commissioned by the NHS. Interpretation: This work represents the longest and most comprehensive accounting of national health-care emissions globally, and underscores the importance of incorporating bottom-up data to improve the accuracy of top-down modelling and enabling detailed monitoring of progress as health systems act to reduce emissions. Funding: Wellcome Trust

    Health care's response to climate change: a carbon footprint assessment of the NHS in England

    Get PDF
    Background Climate change threatens to undermine the past 50 years of gains in public health. In response, the National Health Service (NHS) in England has been working since 2008 to quantify and reduce its carbon footprint. This Article presents the latest update to its greenhouse gas accounting, identifying interventions for mitigation efforts and describing an approach applicable to other health systems across the world. Methods A hybrid model was used to quantify emissions within Scopes 1, 2, and 3 of the Greenhouse Gas Protocol, as well as patient and visitor travel emissions, from 1990 to 2019. This approach complements the broad coverage of top-down economic modelling with the high accuracy of bottom-up data wherever available. Available data were backcasted or forecasted to cover all years. To enable the identification of measures to reduce carbon emissions, results were disaggregated by organisation type. Findings In 2019, the health service's emissions totalled 25 megatonnes of carbon dioxide equivalent, a reduction of 26% since 1990, and a decrease of 64% in the emissions per inpatient finished admission episode. Of the 2019 footprint, 62% came from the supply chain, 24% from the direct delivery of care, 10% from staff commute and patient and visitor travel, and 4% from private health and care services commissioned by the NHS. Interpretation This work represents the longest and most comprehensive accounting of national health-care emissions globally, and underscores the importance of incorporating bottom-up data to improve the accuracy of top-down modelling and enabling detailed monitoring of progress as health systems act to reduce emissions. Funding Wellcome Trust

    Neuroscience, Ethics, and National Security: The State of the Art

    Get PDF
    Military involvement and research in neuroscience generates unique ethical, legal, and social issues that require careful elucidation and consideration in order to align the potentially conflicting needs of national defense, public interest, and scientific progress

    Conceptualising population health: from mechanistic thinking to complexity science

    Get PDF
    The mechanistic interpretation of reality can be traced to the influential work by René Descartes and Sir Isaac Newton. Their theories were able to accurately predict most physical phenomena relating to motion, optics and gravity. This paradigm had at least three principles and approaches: reductionism, linearity and hierarchy. These ideas appear to have influenced social scientists and the discourse on population health. In contrast, Complexity Science takes a more holistic view of systems. It views natural systems as being 'open', with fuzzy borders, constantly adapting to cope with pressures from the environment. These are called Complex Adaptive Systems (CAS). The sub-systems within it lack stable hierarchies, and the roles of agency keep changing. The interactions with the environment and among sub-systems are non-linear interactions and lead to self-organisation and emergent properties. Theoretical frameworks such as epi+demos+cracy and the ecosocial approach to health have implicitly used some of these concepts of interacting dynamic sub-systems. Using Complexity Science we can view population health outcomes as an emergent property of CAS, which has numerous dynamic non-linear interactions among its interconnected sub-systems or agents. In order to appreciate these sub-systems and determinants, one should acquire a basic knowledge of diverse disciplines and interact with experts from different disciplines. Strategies to improve health should be multi-pronged, and take into account the diversity of actors, determinants and contexts. The dynamic nature of the system requires that the interventions are constantly monitored to provide early feedback to a flexible system that takes quick corrections

    Stopping Antiepileptic Drugs: When and Why?

    Get PDF
    After a patient has initiated an antiepileptic drug (AED) and achieved a sustained period of seizure freedom, the bias towards continuing therapy indefinitely can be substantial. Studies show that the rate of seizure recurrence after AED withdrawal is about two to three times the rate in patients who continue AEDs, but there are many benefits to AED withdrawal that should be evaluated on an individualized basis. AED discontinuation may be considered in patients whose seizures have been completely controlled for a prolonged period, typically 1 to 2 years for children and 2 to 5 years for adults. For children, symptomatic epilepsy, adolescent onset, and a longer time to achieve seizure control are associated with a worse prognosis. In adults, factors such as a longer duration of epilepsy, an abnormal neurologic examination, an abnormal EEG, and certain epilepsy syndromes are known to increase the risk of recurrence. Even in patients with a favorable prognosis, however, the risk of relapse can be as high as 20% to 25%. Before withdrawing AEDs, patients should be counseled about their individual risk for relapse and the potential implications of a recurrent seizure, particularly for safety and driving

    Role of Steps in N

    Get PDF
    Using adsorption experiments and density functional calculations we show that N-2 dissociation on the Ru(0001) surface is totally dominated by steps. The measured adsorption rate at the steps is at least 9 orders of magnitude higher than on the terraces at 500 K, and the corresponding calculated difference in activation energy is 1.5 eV. The low barrier at the step is shown to be due to a combination of electronic and geometrical effects. The consequences for Ru as a catalyst for ammonia synthesis are discussed
    corecore