537 research outputs found
Balancing Selection at a Frog Antimicrobial Peptide Locus: Fluctuating Immune Effector Alleles?
Balancing selection is common on many defense genes, but it has rarely been reported for immune effector proteins such as antimicrobial peptides (AMPs). We describe genetic diversity at a brevinin-1 AMP locus in three species of leopard frogs (Rana pipiens, Rana blairi, and Rana palustris). Several highly divergent allelic lineages are segregating at this locus. That this unusual pattern results from balancing selection is demonstrated by multiple lines of evidence, including a ratio of nonsynonymous/synonymous polymorphism significantly higher than 1, the ZnS test, incongruence between the number of segregating sites and haplotype diversity, and significant Tajima's D values. Our data are more consistent with a model of fluctuating selection in which alleles change frequencies over time than with a model of stable balancing selection such as overdominance. Evidence for fluctuating selection includes skewed allele frequencies, low levels of synonymous variation, nonneutral values of Tajima's D within allelic lineages, an inverse relationship between the frequency of an allelic lineage and its degree of polymorphism, and divergent allele frequencies among populations. AMP loci could be important sites of adaptive genetic diversity, with consequences for host–pathogen coevolution and the ability of species to resist disease epidemics
The geography of recent genetic ancestry across Europe
The recent genealogical history of human populations is a complex mosaic
formed by individual migration, large-scale population movements, and other
demographic events. Population genomics datasets can provide a window into this
recent history, as rare traces of recent shared genetic ancestry are detectable
due to long segments of shared genomic material. We make use of genomic data
for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of
recent genealogical ancestry over the past three thousand years at a
continental scale. We detected 1.9 million shared genomic segments, and used
the lengths of these to infer the distribution of shared ancestors across time
and geography. We find that a pair of modern Europeans living in neighboring
populations share around 10-50 genetic common ancestors from the last 1500
years, and upwards of 500 genetic ancestors from the previous 1000 years. These
numbers drop off exponentially with geographic distance, but since genetic
ancestry is rare, individuals from opposite ends of Europe are still expected
to share millions of common genealogical ancestors over the last 1000 years.
There is substantial regional variation in the number of shared genetic
ancestors: especially high numbers of common ancestors between many eastern
populations likely date to the Slavic and/or Hunnic expansions, while much
lower levels of common ancestry in the Italian and Iberian peninsulas may
indicate weaker demographic effects of Germanic expansions into these areas
and/or more stably structured populations. Recent shared ancestry in modern
Europeans is ubiquitous, and clearly shows the impact of both small-scale
migration and large historical events. Population genomic datasets have
considerable power to uncover recent demographic history, and will allow a much
fuller picture of the close genealogical kinship of individuals across the
world.Comment: Full size figures available from
http://www.eve.ucdavis.edu/~plralph/research.html; or html version at
http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm
Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches
Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Within- and Among-Population Variation in Chytridiomycosis-Induced Mortality in the Toad Alytes obstetricans
Background
Chytridiomycosis is a fungal disease linked to local and global extinctions of amphibians. Susceptibility to chytridiomycosis varies greatly between amphibian species, but little is known about between- and within-population variability. However, this kind of variability is the basis for the evolution of tolerance and resistance evolution to disease.
Methodology/Principal Findings
In a common garden experiment, we measured mortality after metamorphosis of Alytes obstetricans naturally infected with Batrachochytrium dendrobatidis. Mortality rates differed significantly among populations and ranged from 27 to 90%. Within populations, mortality strongly depended on mass at and time through metamorphosis.
Conclusions/Significance
Although we cannot rule out that the differences observed resulted from differences in skin microbiota, different pathogen strains or environmental effects experienced by the host or the pathogen prior to the start of the experiment, we argue that genetic differences between populations are a likely source of at least part of this variation. To our knowledge, this is the first study showing differences in survival between and within populations under constant laboratory conditions. Assuming that some of this intraspecific variation has a genetic basis, this may suggest that there is the potential for the evolution of resistance or tolerance, which might allow population persistence
Optimization of PCR conditions to amplify microsatellite loci in the bunchgrass lizard (Sceloporus slevini) genomic DNA
<p>Abstract</p> <p>Background</p> <p>Microsatellites, also called Simple Sequence Repeats (SSRs), repetitions of nucleotide motifs of 1-5 bases, are currently the markers of choice due to their abundant distribution in the genomes, and suitability for high-throughput analysis. A total of five different primer pairs were optimized for polymerase chain reaction (PCR) to amplify microsatellite loci in total genomic DNA of bunchgrass lizards (<it>Sceloporus slevini</it>) collected from three sites in southeastern Arizona; the Sonoita Plain, Chiricahua Mountains and Huachuca Mountains.</p> <p>Findings</p> <p>The primers used for current investigation were originally designed for the Eastern Fence Lizard (<it>Sceloporus undulatus</it>). Five primer pairs were selected based on annealing temperatures for optimizing the PCR conditions to amplify with bunchgrass lizards. Different concentrations of DNA and annealing temperature were optimized. While keeping other reagents constant, a DNA concentration, 37.5 ng in the final reaction volume and PCR conditions of an initial denaturation of 94°C for five minutes, an annealing temperature of 55°C and final extension of 72°C for four minutes gave the best amplification for all the primer pairs.</p> <p>Conclusions</p> <p>Modifying the standard protocol for annealing temperatures and final extension time increases the success of cross amplification of specific microsatellite loci in the bunchgrass lizard. A loading volume of 5 ul DNA at a concentration of 10 ng/ul and a 2% agarose for gel electrophoresis were observed the best for cross amplification of selected five primer pairs on bunch grass lizard.</p> <p>Trial Registration</p> <p>The research was conducted with Arizona Game and Fish Department scientific collecting permits SP565256, SP657407 & SP749119 to Dr. Christian A d'Orgeix.</p
Recommended from our members
Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni
Background:
New strategies to combat the global scourge of schistosomiasis may be revealed by increased understanding of the mechanisms by which the obligate snail host can resist the schistosome parasite. However, few molecular markers linked to resistance have been identified and characterized in snails.
Methodology/Principal Findings:
Here we test six independent genetic loci for their influence on resistance to Schistosoma mansoni strain PR1 in the 13-16-R1 strain of the snail Biomphalaria glabrata. We first identify a genomic region, RADres, showing the highest differentiation between susceptible and resistant inbred lines among 1611 informative restriction-site associated DNA (RAD) markers, and show that it significantly influences resistance in an independent set of 439 outbred snails. The additive effect of each RADres resistance allele is 2-fold, similar to that of the previously identified resistance gene sod1. The data fit a model in which both loci contribute independently and additively to resistance, such that the odds of infection in homozygotes for the resistance alleles at both loci (13% infected) is 16-fold lower than the odds of infection in snails without any resistance alleles (70% infected). Genome-wide linkage disequilibrium is high, with both sod1 and RADres residing on haplotype blocks >2Mb, and with other markers in each block also showing significant effects on resistance; thus the causal genes within these blocks remain to be demonstrated. Other candidate loci had no effect on resistance, including the Guadeloupe Resistance Complex and three genes (aif, infPhox, and prx1) with immunological roles and expression patterns tied to resistance, which must therefore be trans-regulated.
Conclusions/Significance:
The loci RADres and sod1 both have strong effects on resistance to S. mansoni. Future approaches to control schistosomiasis may benefit from further efforts to characterize and harness this natural genetic variation
Males miss and females forgo: auditory masking from vessel noise impairs foraging efficiency and success in killer whales
Understanding how the environment mediates an organism's ability to meet basic survival requirements is a fundamental goal of ecology. Vessel noise is a global threat to marine ecosystems and is increasing in intensity and spatiotemporal extent due to growth in shipping coupled with physical changes to ocean soundscapes from ocean warming and acidification. Odontocetes rely on biosonar to forage, yet determining the consequences of vessel noise on foraging has been limited by the challenges of observing underwater foraging outcomes and measuring noise levels received by individuals. To address these challenges, we leveraged a unique acoustic and movement dataset from 25 animal‐borne biologging tags temporarily attached to individuals from two populations of fish‐eating killer whales (Orcinus orca) in highly transited coastal waters to (1) test for the effects of vessel noise on foraging behaviors—searching (slow‐click echolocation), pursuit (buzzes), and capture and (2) investigate the mechanism of interference. For every 1 dB increase in maximum noise level, there was a 4% increase in the odds of searching for prey by both sexes, a 58% decrease in the odds of pursuit by females and a 12.5% decrease in the odds of prey capture by both sexes. Moreover, all but one deep (≥75 m) foraging attempt with noise ≥110 dB re 1 μPa (15–45 kHz band; n = 6 dives by n = 4 whales) resulted in failed prey capture. These responses are consistent with an auditory masking mechanism. Our findings demonstrate the effects of vessel noise across multiple phases of odontocete foraging, underscoring the importance of managing anthropogenic inputs into soundscapes to achieve conservation objectives for acoustically sensitive species. While the timescales for recovering depleted prey species may span decades, these findings suggest that complementary actions to reduce ocean noise in the short term offer a critical pathway for recovering odontocete foraging opportunities
Miiuy Croaker Hepcidin Gene and Comparative Analyses Reveal Evidence for Positive Selection
Hepcidin antimicrobial peptide (HAMP) is a small cysteine-rich peptide and a key molecule of the innate immune system against bacterial infections. Molecular cloning and genomic characterization of HAMP gene in the miiuy croaker (Miichthys miiuy) were reported in this study. The miiuy croaker HAMP was predicted to encode a prepropeptide of 99 amino acids, a tentative RX(K/R)R cleavage motif and eight characteristic cysteine residues were also identified. The gene organization is also similar to corresponding genes in mammals and fish consisting of three exons and two introns. Sequence polymorphism analysis showed that only two different sequences were identified and encoded two proteins in six individuals. As reported for most other species, the expression level was highest in liver and an up-regulation of transcription was seen in spleen, intestine and kidney examined at 24 h after injection of pathogenic bacteria, Vibrio anguillarum, the expression pattern implied that miiuy croaker HAMP is an important component of the first line defense against invading pathogens. In addition, we report on the underlying mechanism that maintains sequences diversity among fish and mammalian species, respectively. A series of site-model tests implemented in the CODEML program revealed that moderate positive Darwinian selection is likely to cause the molecular evolution in the fish HAMP2 genes and it also showed that the fish HAMP1 genes and HAMP2 genes under different selection pressures
Divergent foraging strategies between populations of sympatric matrilineal killer whales
In cooperative species, human-induced rapid environmental change may threaten cost–benefit tradeoffs of group behavioral strategies that evolved in past environments. Capacity for behavioral flexibility can increase population viability in novel environments. Whether the partitioning of individual responsibilities within social groups is fixed or flexible across populations is poorly understood, despite its relevance for predicting responses to global change at the population and species levels and designing successful conservation programs. We leveraged bio-logging data from two populations of fish-eating killer whales (Orcinus orca) to quantify patterns of fine-scale foraging movements and their relationships with demography. We reveal striking interpopulation differences in patterns of individual foraging behavior. Females from the endangered Southern Resident (SRKW) population captured less prey and spent less time pursuing prey than SRKW males or Northern Resident (NRKW) females, whereas NRKW females captured more prey than NRKW males. The presence of a calf (≤3 years) reduced the number of prey captured by adult females from both populations, but disproportionately so for SRKW. SRKW adult males with a living mother captured more prey than those whose mother had died, whereas the opposite was true for NRKW adult males. Across populations, males foraged in deeper areas than females, and SRKW captured prey deeper than NRKW. These population-level differences in patterns of individual foraging behavior challenge the existing paradigm that females are the disproportionate foragers in gregarious resident killer whales, and demonstrate considerable variation in the foraging strategies across populations of an apex marine predator experiencing different environmental stressors
Meta-Analysis of Gene Level Tests for Rare Variant Association
The vast majority of connections between complex disease and common genetic variants were identified through meta-analysis, a powerful approach that enables large sample sizes while protecting against common artifacts due to population structure, repeated small sample analyses, and/or limitations with sharing individual level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the unit of analysis. Here, we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features of single variant meta-analytic approaches and demonstrate its utility in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays
- …