43 research outputs found

    Increased Natural Killer Cells Are Associated with Alcohol Liver Fibrosis and with T Cell and Cytotoxic Subpopulations Change

    Get PDF
    Natural killer (NK) cells play a therapeutic role in liver fibrosis (LF). We aimed to analyze NK cells in heavy drinkers without cirrhosis or decompensated liver disease and establish correlations with other related subpopulations. Data on sociodemographic characteristics, alcohol consumption, laboratory parameters, and immunophenotyping of NK (CD16 + /CD56 +), T (CD3 +), B (CD19 +), NKT (CD16 + /CD56 + /CD3 +), and cytotoxic (CD3 - CD8 +) cells were collected. Fibrosis-4 (FIB-4) scores were used to compare patients without (FIB-4 3.25) advanced LF (ALF). We included 136 patients (76% male) with a mean age of 49 years who had a 15-year alcohol use disorder (AUD) and alcohol consumption of 164 g/day. Patients with ALF (n = 25) presented significantly lower absolute total lymphocyte, T cell, B cell, and NKT cell numbers than patients without LF (n = 50; p < 0.01). However, the NK cells count was similar (208 ± 109 cells/µL vs. 170 ± 105 cells/µL) in both groups. The T cells percentage was lower (80.3 ± 5.6% vs. 77 ± 7%; p = 0.03) and the NK cells percentage was higher (9.7 ± 5% vs. 13 ± 6%; p = 0.02) in patients with ALF than in those without LF. The percentages of NK cells and T cells were inversely correlated in patients without (r = -0.65, p < 0.01) and with ALF (r = −0.64; p < 0.01). Additionally, the NK cells and CD3 - CD8 + cell percentages were positively correlated in patients without (r = 0.87, p < 0.01) and with (r = 0.92; p < 0.01) ALF. Conclusions: Heavy drinkers without decompensated liver disease showed an increase in NK cells related to T cells lymphopenia and an increase in cytotoxic populations. The interaction of NK cells with other subpopulations may modify alcohol-related liver disease progression

    Vitamin D3-Induced Tolerogenic Dendritic Cells Modulate the Transcriptomic Profile of T CD4 + Cells Towards a Functional Hyporesponsiveness

    Get PDF
    The use of autologous tolerogenic dendritic cells (tolDC) has become a promising alternative for the treatment of autoimmune diseases. Among the different strategies available, the use of vitamin D3 for the generation of tolDC (vitD3-tolDC) constitutes one of the most robust approaches due to their immune regulatory properties, which are currently being tested in clinical trials. However, the mechanisms that vitD3-tolDC trigger for the induction of tolerance remain elusive. For this reason, we performed a full phenotypical, functional, and transcriptomic characterization of T cells upon their interaction with autologous, antigen-specific vitD3-tolDC. We observed a strong antigen-specific reduction of T cell proliferation, combined with a decrease in the relative prevalence of T1 subpopulations and IFN- γ production. The analysis of the transcriptomic profile of T CD4 + cells evidenced a significant down-modulation of genes involved in cell cycle and cell response to mainly pro-inflammatory immune-related stimuli, highlighting the role of JUNB gene as a potential biomarker of these processes. Consequently, our results show the induction of a strong antigen-specific hyporesponsiveness combined with a reduction on the T1 immune profile of T cells upon their interaction with vitD3-tolDC, which manifests the regulatory properties of these cells and, therefore, their therapeutic potential in the clinic. https://doi.org/10.13039/5011000033295https://doi.org/10.13039/5011000033293https://doi.org/10.13039/5011000033296https://doi.org/10.13039/501100003329 https://doi.org/10.13039/501100003329_https://doi.org/10.13039/501100003329_https://doi.org/10.13039/501100003329 https://doi.org/10.13039/50110000332

    Immunological parameters as biomarkers of response to MicroCrystalline Tyrosine-adjuvanted mite immunotherapy

    Get PDF
    Despite the effectiveness of allergen immunotherapy (AIT), some patients are unresponsive for reasons still unknown; yet validated response biomarkers remain unavailable. To analyze immunological parameters as biomarkers to monitor and predict clinical response to a MicroCrystalline Tyrosine-adjuvanted house dust mite (HDM) AIT in patients with allergic rhinitis (AR). Observational, prospective, multicenter study including adult patients (aged 18-65 years) with AR, with and without asthma, sensitized to the HDM Dermatophagoides pteronyssinus (DP) and prescribed Acarovac Plus® DP 100% in the routine practice. Serum concentrations of total IgE, specific IgE, specific IgG4, IL-4, IL-5, IL-10, IL-13, and IFN-γ were compared between baseline and 12 months after AIT. The relationship between patients' baseline immunological profiles and classification as low, high, and non-responders and between their sensitization profile to DP allergens and effectiveness were analyzed. Of 141 patients recruited, 118 (mean [SD] age of 33.6 [9.5] years) were evaluable. One year after treatment, Der p 1-specific IgE, DP-specific IgG4, and IL-10 increased by a mean (SD) of 3.4 (13.6) kU/L (p = 0.016), 0.43 (0.55) mg/L (p < 0.0001), and 1.35 (7.56) pg/mL (p = 0.033), respectively. Non-responders showed increased baseline levels of IL-13 compared to high responders (p = 0.037). Changes in effectiveness variables between baseline and after AIT were similar regardless of the sensitization profile. Non-responsive patients to AIT showed increased baseline IL-13 concentrations, suggesting its value as prognostic biomarker. DP-specific AIT increased Der p 1-specific IgE, DP-specific IgG4, and IL-10 concentrations in patients with AR. All patients benefited from treatment regardless of their sensitization profile to major DP allergens

    Transfection of Vitamin D3-Induced Tolerogenic Dendritic Cells for the Silencing of Potential Tolerogenic Genes. Identification of CSF1R-CSF1 Signaling as a Glycolytic Regulator

    Get PDF
    The use of autologous tolerogenic dendritic cells (tolDC) has become a promising strategy to re-establish immune tolerance in autoimmune diseases. Among the different strategies available, the use of vitamin D3 for the generation of tolDC (VitD3-tolDC) has been widely tested because of their immune regulatory properties. To identify molecules and pathways involved in the generation of VitD3-tolDC, we established an easy and fast gene silencing method based on the use of Viromer blue to introduce siRNA into monocytes on day 1 of culture differentiation. The analysis of the effect of CD209 (DC-SIGN) and CD115 (CSF1R) down-modulation on the phenotype and functionality of transfected VitD3-tolDC revealed a partial role of CD115 in their tolerogenicity. Further investigations showed that CSF1R-CSF1 signaling is involved in the induction of cell metabolic reprogramming, triggering glycolysis to produce high amounts of lactate, a novel suppressive mechanism of T cell proliferation, recently found in autologous tolerogenic dendritic cells (ATDCs)

    Comparative transcriptomic profile of tolerogenic dendritic cells differentiated with vitamin D3, dexamethasone and rapamycin

    Get PDF
    Tolerogenic dendritic cell (tolDC)-based therapies have become a promising approach for the treatment of autoimmune diseases by their potential ability to restore immune tolerance in an antigen-specific manner. However, the broad variety of protocols used to generate tolDC in vitro and their functional and phenotypical heterogeneity are evidencing the need to find robust biomarkers as a key point towards their translation into the clinic, as well as better understanding the mechanisms involved in the induction of immune tolerance. With that aim, in this study we have compared the transcriptomic profile of tolDC induced with either vitamin D3 (vitD3-tolDC), dexamethasone (dexa-tolDC) or rapamycin (rapa-tolDC) through a microarray analysis in 5 healthy donors. The results evidenced that common differentially expressed genes could not be found for the three different tolDC protocols. However, individually, CYP24A1, MUCL1 and MAP7 for vitD3-tolDC; CD163, CCL18, C1QB and C1QC for dexa-tolDC; and CNGA1 and CYP7B1 for rapa-tolDC, constituted good candidate biomarkers for each respective cellular product. In addition, a further gene set enrichment analysis of the data revealed that dexa-tolDC and vitD3-tolDC share several immune regulatory and anti-inflammatory pathways, while rapa-tolDC seem to be playing a totally different role towards tolerance induction through a strong immunosuppression of their cellular processes

    MAP7 and MUCL1 are biomarkers of Vitamin D3-induced tolerogenic dendritic cells in multiple sclerosis patients

    Get PDF
    The administration of autologous tolerogenic dendritic cells (tolDC) has become a promising alternative for the treatment of autoimmune diseases, such as multiple sclerosis (MS). Specifically, the use of vitamin D3 for the generation of tolDC (vitD3-tolDC) constitutes one of the most widely studied approaches, as it has evidenced significant immune regulatory properties, both in vitro and in vivo. In this article, we generated human vitD3-tolDC from monocytes from healthy donors and MS patients, characterized in both cases by a semi-mature phenotype, secretion of IL-10 and inhibition of allogeneic lymphocyte proliferation. Additionally, we studied their transcriptomic profile and selected a number of differentially expressed genes compared to control mature and immature dendritic cells for their analysis. Among them, qPCR results validated CYP24A1, MAP7 and MUCL1 genes as biomarkers of vitD3-tolDC in both healthy donors and MS patients. Furthermore, we constructed a network of protein interactions based on the literature, which manifested that MAP7 and MUCL1 genes are both closely connected between them and involved in immune-related functions. In conclusion, this study evidences that MAP7 and MUCL1 constitute robust and potentially functional biomarkers of the generation of vitD3-tolDC, opening the window for their use as quality controls in clinical trials for MS

    NK Cell Subsets Changes in Partial Remission and Early Stages of Pediatric Type 1 Diabetes

    Get PDF
    Type 1 diabetes (T1D) is a chronic metabolic disease characterized by the autoimmune destruction of β-cells in the pancreatic islets. T1D is preceded by islet-specific inflammation led by several immune cells. Among them, natural killer (NK) cells are emerging as important players in T1D development. Human NK cells are characterized by CD56 and CD16 expression, which allows classifying NK cells into four subsets: 1) CD56 dim CD16 + or effector NK cells (NK); 2) CD56 bright CD16 − or regulatory NK cells (NK); 3) intermediate CD56 bright CD16 + NK cells; and 4) CD56 dim CD16 − NK cells, whose function is not well determined. Since many studies have shown that T1D progression is associated with changes in various immune cell types, we hypothesize that the kinetics of NK cell subsets in the blood could correlate with different stages of T1D. To that aim, pediatric patients newly diagnosed with T1D were recruited, and peripheral NK cell subsets were analyzed by flow cytometry at several disease checkpoints: disease onset, partial remission (PR), 8 months (for non-remitters), and 12 months of progression. Our results showed that total NK cells and their four subsets are altered at the early stages of T1D. A decrease in the counts and percentage of total NK cells and NK cells at the different disease stages was found when compared to controls. These results suggest the extravasation of these cells into the islets at disease onset, which is maintained throughout the follow-up. By contrast, NK cells increased during the early stages after T1D onset, and both intermediate NK cells and CD56 dim CD16 - NK cells diminished at the PR stage, which might reflect the immunoregulatory attempts and could be candidate biomarkers for this stage. Also, CD56 dim CD16 - NK cells increased during T1D progression. Finally, changes in CD16 expression were identified in the different T1D stages, highlighting a CD16 expression reduction in total NK cells and NK cells 1 year after diagnosis. That may reflect a state of exhaustion after multiple cell-to-cell interactions. Altogether, our preliminary data provide a longitudinal picture of peripheral NK cell subpopulations during the different T1D stages, which could be potential candidate biomarkers indicators of disease progression

    Partial remission and early stages of pediatric type 1 diabetes display immunoregulatory changes. A pilot study

    Get PDF
    Altres ajuts: This work has been funded by the European Regional Development funds (FEDER), and by DiabetesCero Foundation. CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM) is an initiative from Instituto de Salud Carlos III (Spain). SRF is supported by the Agency for Management of University and Research Grants (AGAUR) of the Generalitat de Catalunya.Type 1 diabetes (T1D) is a chronic metabolic disease of unknown etiology that results from β-cell destruction. The onset of the disease, which arises after a long asymptomatic period of autoimmune attack, may be followed by a relapsing and remitting progression, a phenomenon that is most evident during the partial remission phase (PR). This stage lasts for a few months, shows minor requirements of exogenous insulin and could be explained by a recovery of immunological tolerance. This study aims to identify new biomarkers at early stages of pediatric T1D that reflect immunoregulatory changes. To that end, pediatric patients with T1D (n = 52) and age-related control subjects (n = 30) were recruited. Immune response-related molecules and lymphocyte subsets were determined starting at T1D onset and until the second year of progression. Results showed that circulating TGF-β levels decreased during PR, and that betatrophin concentration was increased in all the considered stages without differing among studied checkpoints. Moreover, an increase of regulatory T, B and NK subsets was found during T1D progression, probably reflecting an attempt to restore self-tolerance. By contrast, a reduction in monocyte levels was observed at the early stages of diabetes. The results reveal significant changes in immunological parameters during the different early stages of T1D in children, which could ultimately serve as potential biomarkers to characterize the progression of T1D
    corecore