5 research outputs found

    Detection of Echinococcus granulosus

    No full text
    Cystic echinococcosis (CE) can be diagnosed by means of several serological approaches, but their results vary among laboratories due to the molecular characteristics of the reference antigens used. Thus, this study aimed to address both the relevance of an EGPE cell line previously obtained from Echinococcus granulosus protoscoleces G1 and the complexity of the immune response by using two different in vitro growth stages as separate sources of parasite antigens. The serum reactivity was investigated by western blotting (WB) in 21 CE patients from an endemic area in a matched case-control design and also in seven experimentally infected sheep and five healthy control sheep. EGPE-antigen-human serum sensitivity by WB was higher than that of hydatid fluid (HF) WB, ELISA and DD5 (P <.05, Chi-square test). EGPE protein extract was immunogenic in mice and hyperimmune plasma reacted with HF proteins, and AgB2 expression was detected by molecular analysis. Proteins of 37 to 60 kDa were recognized by 95.24% of the CE patients’ sera but, with poor specificity. Statistically significant differences were found between serum protein extract recognition at 7 and 20 days of cell growth. The EGPE cell line is a laboratory source of antigens for improvement of CE serological diagnosis.Fil: Maglioco, Andrea Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Abierta Interamericana; ArgentinaFil: Gentile, Jorge. Provincia de Buenos Aires. Municipalidad de Tandil. Hospital Municipal Ramón Santamarina; ArgentinaFil: Barbery Venturi, Melisa Silvana. Universidad Abierta Interamericana; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jensen, Oscar. Centro de Investigación En Zoonosis de la Provincia de Chubut; ArgentinaFil: Hernández, Claudia. Provincia de Buenos Aires. Municipalidad de Tandil. Hospital Municipal Ramón Santamarina; ArgentinaFil: Gertiser, María Laura. Centro de Investigación En Zoonosis de la Provincia de Chubut; ArgentinaFil: Poggio, Thelma Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Canziani, Gabriela Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Fuchs, Alicia Graciela. Universidad Abierta Interamericana; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; Argentin

    Recognition of endophytic Trichoderma

    No full text
    Interactions between leaf-cutting ants, their fungal symbiont (Leucoagaricus) and the endophytic fungi within the vegetation they carry into their colonies are still poorly understood. If endophytes antagonistic to Leucoagaricus were found in plant material being carried by these ants, then this might indicate a potential mechanism for plants to defend themselves from leaf-cutter attack. In addition, it could offer possibilities for the management of these important Neotropical pests. Here, we show that, for Atta sexdens rubropilosa, there was a significantly greater incidence of Trichoderma species in the vegetation removed from the nests—and deposited around the entrances—than in that being transported into the nests. In a no-choice test, Trichoderma-infested rice was taken into the nest, with deleterious effects on both the fungal gardens and ant survival. The endophytic ability of selected strains of Trichoderma was also confirmed, following their inoculation and subsequent reisolation from seedlings of eucalyptus. These results indicate that endophytic fungi which pose a threat to ant fungal gardens through their antagonistic traits, such as Trichoderma, have the potential to act as bodyguards of their plant hosts and thus might be employed in a Trojan-horse strategy to mitigate the negative impact of leaf-cutting ants in both agriculture and silviculture in the Neotropics. We posit that the ants would detect and evict such ‘malign’ endophytes—artificially inoculated into vulnerable crops—during the quality-control process within the nest, and, moreover, that the foraging ants may then be deterred from further harvesting of ‘Trichoderma-enriched’ plants
    corecore