16 research outputs found

    Automated 3D Volumetry of the Pulmonary Arteries based on Magnetic Resonance Angiography Has Potential for Predicting Pulmonary Hypertension

    Get PDF
    Purpose To demonstrate feasibility of automated 3D volumetry of central pulmonary arteries based on magnetic resonance angiography (MRA), to assess pulmonary artery volumes in patients with pulmonary hypertension compared to healthy controls, and to investigate the potential of the technique for predicting pulmonary hypertension. Methods MRA of pulmonary arteries was acquired at 1.5T in 20 patients with pulmonary arterial hypertension and 21 healthy normotensive controls. 3D model-based image analysis software was used for automated segmentation of main, right and left pulmonary arteries (MPA, RPA and LPA). Volumes indexed to vessel length and mean, minimum and maximum diameters along the entire vessel course were assessed and corrected for body surface area (BSA). For comparison, diameters were also manually measured on axial reconstructions and double oblique multiplanar reformations. Analyses were performed by two cardiovascular radiologists, and by one radiologist again after 6 months. Results Mean volumes of MPA, RPA and LPA for patients/controls were 5508 +/- 1236/3438 +/- 749, 3522 +/- 934/1664 +/- 468 and 3093 +/- 692/1812 +/- 474 mu l/(cm length x m(2) BSA) (all p<0.001). Mean, minimum and maximum diameters along the entire vessel course were also significantly increased in patients compared to controls (all p<0.001). Intra-and interobserver agreement were excellent for both volume and diameter measurements using 3D segmentation (intraclass correlation coefficients 0.971-0.999, p<0.001). Area under the curve for predicting pulmonary hypertension using volume was 0.998 (95% confidence interval 0.990-1.0, p<0.001), compared to 0.967 using manually measured MPA diameter (95% confidence interval 0.910-1.0, p<0.001). Conclusions Automated MRA-based 3D volumetry of central pulmonary arteries is feasible and demonstrated significantly increased volumes and diameters in patients with pulmonary arterial hypertension compared to healthy controls. Pulmonary artery volume may serve as a superior predictor for pulmonary hypertension compared to manual measurements on axial images but verification in a larger study population is warranted

    Development, implementation, and evaluation of a structured reporting web tool for abdominal aortic aneurysms

    Get PDF
    BACKGROUND The majority of radiological reports are lacking a standard structure. Even within a specialized area of radiology, each report has its individual structure with regards to details and order, often containing too much of non-relevant information the referring physician is not interested in. For gathering relevant clinical key parameters in an efficient way or to support long-term therapy monitoring, structured reporting might be advantageous. OBJECTIVE Despite of new technologies in medical information systems, medical reporting is still not dynamic. To improve the quality of communication in radiology reports, a new structured reporting system was developed for abdominal aortic aneurysms (AAA), intended to enhance professional communication by providing the pertinent clinical information in a predefined standard. METHODS Actual state analysis was performed within the departments of radiology and vascular surgery by developing a Technology Acceptance Model. The SWOT (strengths, weaknesses, opportunities, and threats) analysis focused on optimization of the radiology reporting of patients with AAA. Definition of clinical parameters was achieved by interviewing experienced clinicians in radiology and vascular surgery. For evaluation, a focus group (4 radiologists) looked at the reports of 16 patients. The usability and reliability of the method was validated in a real-world test environment in the field of radiology. RESULTS A Web-based application for radiological "structured reporting" (SR) was successfully standardized for AAA. Its organization comprises three main categories: characteristics of pathology and adjacent anatomy, measurements, and additional findings. Using different graphical widgets (eg, drop-down menus) in each category facilitate predefined data entries. Measurement parameters shown in a diagram can be defined for clinical monitoring and be adducted for quick adjudications. Figures for optional use to guide and standardize the reporting are embedded. Analysis of variance shows decreased average time required with SR to obtain a radiological report compared to free-text reporting (P=.0001). Questionnaire responses confirm a high acceptance rate by the user. CONCLUSIONS The new SR system may support efficient radiological reporting for initial diagnosis and follow-up for AAA. Perceived advantages of our SR platform are ease of use, which may lead to more accurate decision support. The new system is open to communicate not only with clinical partners but also with Radiology Information and Hospital Information Systems

    Time-Resolved Three-Dimensional Contrast-Enhanced Magnetic Resonance Angiography in Patients with Chronic Expanding and Stable Aortic Dissections

    Get PDF
    Objective. To prospectively evaluate our hypothesis that three-dimensional time-resolved contrast-enhanced magnetic resonance angiography (TR-MRA) is able to detect hemodynamic alterations in patients with chronic expanding aortic dissection compared to stable aortic dissections. Materials and Methods. 20 patients with chronic or residual aortic dissection in the descending aorta and patent false lumen underwent TR-MRA of the aorta at 1.5 T and repeated follow-up imaging (mean follow-up 5.4 years). 7 patients showed chronic aortic expansion and 13 patients had stable aortic diameters. Regions of interest were placed in the nondissected ascending aorta and the false lumen of the descending aorta at the level of the diaphragm (FL-diaphragm level) resulting in respective time-intensity curves. Results. For the FL-diaphragm level, time-to-peak intensity and full width at half maximum were significantly shorter in the expansion group compared to the stable group (p=0.027 and p=0.003), and upward and downward slopes of time-intensity curves were significantly steeper (p=0.015 and p=0.005). The delay of peak intensity in the FL-diaphragm level compared to the nondissected ascending aorta was significantly shorter in the expansion group compared to the stable group (p=0.01). Conclusions. 3D TR-MRA detects significant alterations of hemodynamics within the patent false lumen of chronic expanding aortic dissections compared to stable aortic dissections

    Example of 3D segmentation result.

    No full text
    <p>Representative automated 3D segmentation of central pulmonary arteries based on magnetic resonance angiography used for automated measurements. A color-coding is used to visualize pulmonary artery diameters of the 3D segmentation along the vessel course.</p

    Bland-Altman plots for intra- and interobserver agreement.

    No full text
    <p>Bland-Altman plots show the differences between the two measurements performed by reader 1 (upper row) and the differences between measurements by the two readers (lower row) for automated 3D volume measurements (left), automated 3D mean diameter measurements (center) and manual diameter measurements (right) plotted against the means of the respective measurements. The straight line represents the mean difference, the dotted lines the limits of agreement. No systematic differences for repeated measurements could be observed. There is better agreement of automated 3D mean diameter measurements compared to manual diameter measurements.</p

    Example of manual measurement.

    No full text
    <p>Example of manual measurement of MPA diameter performed on axial reconstructions of the same magnetic resonance angiography data used for 3D segmentation. Manual measurements were performed for comparison with automated measurements.</p
    corecore