73 research outputs found

    Bioconversion of lignocellulose in solid substrate fermentation

    Get PDF
    Abstract In this review the state of the art of lignocellulose bioconversion by solid substrate fermentation (SSF) is presented. The most important lignocellulolytic fungi and their properties are described, and their application in novel solid state bioreactors with on-line process control is discussed. The most important bioconversion products, biofuels, enzymes, animal feeds, biofertilizers, biopesticides, biopromoters, secondary metabolites, and the economy of their production by SSF is discussed. The use of SSF in the pulp and paper industry and in integrated crop management is illustrated

    Evaluation of a Novel Biphasic Culture Medium for Recovery of Mycobacteria: A Multi-Center Study

    Get PDF
    on L-J slants. Automated liquid culture systems are expensive. A low-cost culturing medium capable of rapidly indicating the presence of mycobacteria is needed. The aim of this study was to develop and evaluate a novel biphasic culture medium for the recovery of mycobacteria from clinical sputum specimens from suspected pulmonary tuberculosis patients.<0.001).

    Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation

    Get PDF
    Wastes from olive oil and wine industries (as exhausted grape marc, vineshoot trimmings, two-phase olive mill waste, vinasses, and olive mill wastewater) were evaluated for lignocellulolytic enzyme production (as endocellulases, endoxylanases, and feruloyl esterases) by solid-state fermentation (SSF) with Aspergillus niger, Aspergillus ibericus, and Aspergillus uvarum. To study the effect of different solid medium composition and time in enzyme production, a PlackettBurman experimental design was used. Variables that had a higher positive effect in lignocellulolytic enzyme production were urea, time, and exhausted grape marc. The maximum values of enzymatic activity per unit of substrate dry mass were found with A. niger for feruloyl esterase. Enzymatic extracts from SSF with A. niger achieved maximum feruloyl esterase activity (89.53 U/g) and endoxylanase activity (3.06 U/g) and with A. uvarum for endocellulase activity (6.77 U/g). The enzyme cocktails obtained in the SSF extracts may have applications in biorefinery industries.Jose Manuel Salgado is grateful for the postdoctoral fellowship (EX-2010-0402) of the Education Ministry of Spanish Government. Luis Abrunhosa was supported by the grant SFRH/BPD/43922/2008 from Fundacao para a Ciencia e Tecnologia-FCT, Portugal

    Enzymatic hydrolysis of sorghum straw using native cellulase produced by T. reesei NCIM 992 under solid state fermentation using rice straw

    Get PDF
    Cellulose is a major constituent of renewable lignocellulosic waste available in large quantities and is considered the most important reservoir of carbon for the production of glucose, for alternative fuel and as a chemical feedstock. Over the past decade, the emphasis has been on the enzymatic hydrolysis of cellulose to glucose and the efficiency of which depends on source of cellulosic substrate, its composition, structure, pretreatment process, and reactor design. In the present study, efforts were made to produce cellulase enzyme using rice straw. The produced enzyme was used for the hydrolysis of selected lignocellulosic substrate, i.e., sorghum straw. When rice straw was used as a substrate for cellulase production under solid state fermentation, the highest enzyme activity obtained was 30.7 FPU/gds, using T. reesei NCIM 992. 25 FPU/g of cellulase was added to differently treated (native, alkali treated, alkali treated followed by 3% acid treated and alkali treated followed by 3 and 5% acid treated) sorghum straw and hydrolysis was carried out at 50 °C for 60 h. 42.5% hydrolysis was obtained after 36 h of incubation. Optimization of enzyme loading, substrate concentration, temperature, time and buffer yielded a maximum of 546.00 ± 0.55 mg/g sugars (54.60 ± 0.44 g/l) with an improved hydrolysis efficiency of 70 ± 0.45%. The enzymatic hydrolyzate can be used for fermentation of ethanol by yeasts
    corecore