14,579 research outputs found
Mobility: a double-edged sword for HSPA networks
This paper presents an empirical study on the performance of mobile High Speed Packet Access (HSPA, a 3.5G cellular standard) networks in Hong Kong via extensive field tests. Our study, from the viewpoint of end users, covers virtually all possible mobile scenarios in urban areas, including subways, trains, off-shore ferries and city buses. We have confirmed that mobility has largely negative impacts on the performance of HSPA networks, as fast-changing wireless environment causes serious service deterioration or even interruption. Meanwhile our field experiment results have shown unexpected new findings and thereby exposed new features of the mobile HSPA networks, which contradict commonly held views. We surprisingly find out that mobility can improve fairness of bandwidth sharing among users and traffic flows. Also the triggering and final results of handoffs in mobile HSPA networks are unpredictable and often inappropriate, thus calling for fast reacting fallover mechanisms. We have conducted in-depth research to furnish detailed analysis and explanations to what we have observed. We conclude that mobility is a double-edged sword for HSPA networks. To the best of our knowledge, this is the first public report on a large scale empirical study on the performance of commercial mobile HSPA networks
Benefits of demand-side response in providing frequency response service in the future GB power system
The demand for ancillary service is expected to increase significantly in the future Great Britain (GB) electricity system due to high penetration of wind. In particular, the need for frequency response, required to deal with sudden frequency drops following a loss of generator, will increase because of the limited inertia capability of wind plants. This paper quantifies the requirements for primary frequency response and analyses the benefits of frequency response provision from demand-side response (DSR). The results show dramatic changes in frequency response requirements driven by high penetration of wind. Case studies carried out by using an advanced stochastic generation scheduling model suggest that the provision of frequency response from DSR could greatly reduce the system operation cost, wind curtailment, and carbon emissions in the future GB system characterized by high penetration of wind. Furthermore, the results demonstrate that the benefit of DSR shows significant diurnal and seasonal variation, whereas an even more rapid (instant) delivery of frequency response from DSR could provide significant additional value. Our studies also indicate that the competing technologies to DSR, namely battery storage, and more flexible generation could potentially reduce its value by up to 35%, still leaving significant room to deploy DSR as frequency response provider
The effect of manganese oxide on the sinterability of hydroxyapatite
The sinterability of manganese oxide (MnO2) doped hydroxyapatite (HA) ranging from 0.05 to 1 wt% was investigated. Green samples were prepared and sintered in air at temperatures ranging from 1000 to 1400 °C. Sintered bodies were characterized to determine the phase stability, grain size, bulk density, hardness, fracture toughness and Young's modulus. XRD analysis revealed that the HA phase stability was not disrupted throughout the sintering regime employed. In general, samples containing less than 0.5 wt% MnO2 and when sintered at lower temperatures exhibited higher mechanical properties than the undoped HA. The study revealed that all the MnO2-doped HA achieved >99% relative density when sintered at 1100â1250 °C as compared to the undoped HA which could only attained highest value of 98.9% at 1150 °C. The addition of 0.05 wt% MnO2 was found to be most beneficial as the samples exhibited the highest hardness of 7.58 GPa and fracture toughness of 1.65 MPam1/2 as compared to 5.72 GPa and 1.22 MPam1/2 for the undoped HA when sintered at 1000 °C. Additionally, it was found that the MnO2-doped samples attained E values above 110 GPa when sintered at temperature as low as 1000 °C if compared to 1050 °C for the undoped HA
Metabolism of ticagrelor in patients with acute coronary syndromes.
© The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (nâ=â117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180âmg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio
Temperature dependent electrical resistivity of a single strand of ferromagnetic single crystalline nanowire
We have measured the electrical resistivity of a single strand of a
ferromagnetic Ni nanowire of diameter 55 nm using a 4-probe method in the
temperature range 3 K-300 K. The wire used is chemically pure and is a high
quality oriented single crystalline sample in which the temperature independent
residual resistivity is determined predominantly by surface scattering. Precise
evaluation of the temperature dependent resistivity () allowed us to
identify quantitatively the electron-phonon contribution (characterized by a
Debye temperature ) as well as the spin-wave contribution which is
significantly suppressed upon size reduction
Half-Megasecond Chandra Spectral Imaging of the Hot Circumgalactic Nebula around Quasar Mrk 231
A deep 400-ksec ACIS-S observation of the nearest quasar known, Mrk 231, is
combined with archival 120-ksec data obtained with the same instrument and
setup to carry out the first ever spatially resolved spectral analysis of a hot
X-ray emitting circumgalactic nebula around a quasar. The 65 x 50 kpc X-ray
nebula shares no resemblance with the tidal debris seen at optical wavelengths.
One notable exception is the small tidal arc 3.5 kpc south of the nucleus where
excess soft X-ray continuum emission and Si XIII 1.8 keV line emission are
detected, consistent with star formation and its associated alpha-element
enhancement, respectively. An X-ray shadow is also detected at the location of
the 15-kpc northern tidal tail. The hard X-ray continuum emission within 6 kpc
of the center is consistent with being due entirely to the bright central AGN.
The soft X-ray spectrum of the outer (>6 kpc) portion of the nebula is best
described as the sum of two thermal components with T~3 and ~8 million K and
spatially uniform super-solar alpha element abundances, relative to iron. This
result implies enhanced star formation activity over ~10^8 yrs accompanied with
redistribution of the metals on large scale. The low-temperature thermal
component is not present within 6 kpc of the nucleus, suggesting extra heating
in this region from the circumnuclear starburst, the central quasar, or the
wide-angle quasar-driven outflow identified from optical IFU spectroscopy on a
scale of >3 kpc. Significant azimuthal variations in the soft X-ray intensity
are detected in the inner region where the outflow is present. The soft X-ray
emission is weaker in the western quadrant, coincident with a deficit of Halpha
and some of the largest columns of neutral gas outflowing from the nucleus.
Shocks created by the interaction of the wind with the ambient ISM may heat the
gas to high temperatures at this location. (abridged)Comment: 43 pages, 11 figures, accepted for publication in the Astrophysical
Journa
Grown-in defects and defects produced by 1-Me electron irradiated in Al0.3Ga0.7As P-N junction solar cells
Studies of grown-in defects and defects produced by the one-MeV electron irradiation in Al sub 0.3 Ga sub 0.7As p-n junction solar cells fabricated by liquid phase epitaxial (LPE) technique were made for the unirradiated and one-MeV electron irradiated samples, using DLTS and C-V methods. Defect and recombination parameters such as energy level, defect density, carrier capture cross sections and lifetimes were determined for various growth, annealing, and irradiation conditions
High pressure effect on structure, electronic structure and thermoelectric properties of MoS
We systematically study the effect of high pressure on the structure,
electronic structure and transport properties of 2H-MoS, based on
first-principles density functional calculations and the Boltzmann transport
theory. Our calculation shows a vanishing anisotropy in the rate of structural
change at around 25 GPa, in agreement with the experimental data. A conversion
from van der Waals(vdW) to covalent-like bonding is seen. Concurrently, a
transition from semiconductor to metal occurs at 25 GPa from band structure
calculation. Our transport calculations also find pressure-enhanced electrical
conductivities and significant values of the thermoelectric figure of merit
over a wide temperature range. Our study supplies a new route to improve the
thermoelectric performance of MoS and of other transition metal
dichalcogenides by applying hydrostatic pressure.Comment: 6 pages, 6 figures; published in JOURNAL OF APPLIED PHYSICS 113, xxxx
(2013
A Chandra X-Ray Survey of Ultraluminous Infrared Galaxies
We present results from Chandra observations of 14 ultraluminous infrared
galaxies (ULIRGs; log(L_IR/L_Sun) >= 12) with redshifts between 0.04 and 0.16.
The goals of the observations were to investigate any correlation between
infrared color or luminosity and the properties of the X-ray emission and to
attempt to determine whether these objects are powered by starbursts or active
galactic nuclei (AGNs). The sample contains approximately the same number of
high and low luminosity objects and ``warm'' and ``cool'' ULIRGs. All 14
galaxies were detected by Chandra. Our analysis shows that the X-ray emission
of the two Seyfert 1 galaxies in our sample are dominated by AGN. The remaining
12 sources are too faint for conventional spectral fitting to be applicable.
Hardness ratios were used to estimate the spectral properties of these faint
sources. The photon indices for our sample plus the Chandra-observed sample
from Ptak et al.(2003) peak in the range of 1.0-1.5, consistent with
expectations for X-ray binaries in a starburst, an absorbed AGN, or hot
bremsstrahlung from a starburst or AGN. The values of photon index for the
objects in our sample classified as Seyferts (type 1 or 2) are larger than 2,
while those classified as HII regions or LINERs tend to be less than 2. The
hard X-ray to far-infrared ratios for the 12 weak sources are similar to those
of starbursts, but we cannot rule out the possibility of absorbed, possibly
Compton-thick, AGNs in some of these objects. Two of these faint sources were
found to have X-ray counterparts to their double optical and infrared nuclei.Comment: 40 pages, 5 tables, 14 figures, accepted by Ap
- âŠ