11,735 research outputs found

    Grown-in defects and defects produced by 1-Me electron irradiated in Al0.3Ga0.7As P-N junction solar cells

    Get PDF
    Studies of grown-in defects and defects produced by the one-MeV electron irradiation in Al sub 0.3 Ga sub 0.7As p-n junction solar cells fabricated by liquid phase epitaxial (LPE) technique were made for the unirradiated and one-MeV electron irradiated samples, using DLTS and C-V methods. Defect and recombination parameters such as energy level, defect density, carrier capture cross sections and lifetimes were determined for various growth, annealing, and irradiation conditions

    Metabolism of ticagrelor in patients with acute coronary syndromes.

    Get PDF
    © The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio

    Shape Synthesis in Mechanical Design

    Get PDF
    The shaping of structural elements in the area of mechanical design is a recurrent problem. The mechanical designer, as a rule, chooses what is believed to be the “simplest” shapes, such as the geometric primitives: lines, circles and, occasionally, conics. The use of higher-order curves is usually not even considered, not to speak of other curves than polynomials. However, the simplest geometric shapes are not necessarily the most suitable when the designed element must withstand loads that can lead to failure-prone stress concentrations. Indeed, as mechanical designers have known for a while, stress concentrations occur, first and foremost, by virtue of either dramatic changes in curvature or extremely high values thereof. As an alternative, we propose here the use of smooth curves that can be simply generated using standard concepts such as non-parametric cubic splines. These curves can be readily used to produce either extruded surfaces or surfaces of revolution.

    Perancangan Propeler Turbin Angin Pada Gedung Hemat Energi

    Full text link
    Turbin angin dapat menjadi salah satu solusi alat pembangkit tenaga listrik dengan mengkonversi energi angin menjadi listrik ditengah krisis energi global pada abad ke-21 ini. Kebutuhan energi didaerah perkotaan terus meningkat seiring berjalannya waktu yang tidak diikuti perkembangan sumber energi terbarukan. Dengan adanya gedung-gedung tinggi, semestinya meningkatkan potensi energi angin yang melewati sela-sela gedung yang merupakan konsentrator angin. Maka, perlu dirancang Propeler Turbin Angin yang optimal yang dapat menjawab kebutuhan energi di daerah perkotaan khususnya pada Gedung Hemat Energi. Penelitian ini bertujuan untuk mengetahui desain propeler yang paling optimum. Penelitian dilakukan dengan proses perhitungan dengan BEM, simulasi dengan menggunakan FLUENT, eksperimen dengan menggunakan Miniatur berskala 1:10, dan Pengujian dengan Prototype dengan ukuran sebenarnya. Berdasarkan hasil penelitian, Mixed Ideal Blade memiliki efisiensi sebesar 38,364%, unggul 1,244% dari Uniform Ideal Blade serta unggul 7,987% dari Uniform Linearised Blade. Dari hasil pengujian, Turbin angin mulai berputar pada kecepatan angin 2,6 m/s. Dari hasil penelitian tersebut, maka Mixed Ideal Blade dapat diaplikasikan pada Gedung P1 dan P2 UK. Petra yang merupakan Gedung Hemat Energ

    First order magnetic transition in CeFe2_2 alloys: Phase-coexistence and metastability

    Full text link
    First order ferromagnetic (FM) to antiferromagnetic (AFM) phase transition in doped-CeFe2_2 alloys is studied with micro-Hall probe technique. Clear visual evidence of magnetic phase-coexistence on micrometer scales and the evolution of this phase-coexistence as a function of temperature, magnetic field and time across the first order FM-AFM transition is presented. Such phase-coexistence and metastability arise as natural consequence of an intrinsic disorder-influenced first order transition. Generality of this phenomena involving other classes of materials is discussed.Comment: 11 pages of text and 3 figure

    Density dependence of spin relaxation in GaAs quantum well at room temperature

    Full text link
    Carrier density dependence of electron spin relaxation in an intrinsic GaAs quantum well is investigated at room temperature using time-resolved circularly polarized pump-probe spectroscopy. It is revealed that the spin relaxation time first increases with density in the relatively low density regime where the linear D'yakonov-Perel' spin-orbit coupling terms are dominant, and then tends to decrease when the density is large and the cubic D'yakonov-Perel' spin-orbit coupling terms become important. These features are in good agreement with theoritical predictions by L\"u {\em et al.} [Phys. Rev. B {\bf 73}, 125314 (2006)]. A fully microscopic calculation based on numerically solving the kinetic spin Bloch equations with both the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms included, reproduces the density dependence of spin relaxation very well.Comment: 4 pages, 2 figures, Europhys. Lett., in pres

    Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    Get PDF
    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer–fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km^2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM_(2.5) (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5–3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH_4^+]/(2[SO_4^(2−)] + [NO_3^−]) is only 0.5–0.7 mol mol^(−1) in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8–28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines are due to shutdowns in both biogenic emissions and UV-driven photochemistry. Surface PM_(2.5) shows far less summer-to-winter decrease than AOD and we attribute this in part to the offsetting effect of weaker boundary layer ventilation. The SEAC4RS aircraft data demonstrate that AODs measured from space are consistent with surface PM_(2.5). This implies that satellites can be used reliably to infer surface PM_(2.5) over monthly timescales if a good CTM representation of the aerosol vertical profile is available

    Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure

    Full text link
    We study the problem of finding and characterizing subgraphs with small \textit{bipartiteness ratio}. We give a bicriteria approximation algorithm \verb|SwpDB| such that if there exists a subset SS of volume at most kk and bipartiteness ratio θ\theta, then for any 0<ϵ<1/20<\epsilon<1/2, it finds a set SS' of volume at most 2k1+ϵ2k^{1+\epsilon} and bipartiteness ratio at most 4θ/ϵ4\sqrt{\theta/\epsilon}. By combining a truncation operation, we give a local algorithm \verb|LocDB|, which has asymptotically the same approximation guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness ratio of the output set, and runs in time O(ϵ2θ2k1+ϵln3k)O(\epsilon^2\theta^{-2}k^{1+\epsilon}\ln^3k), independent of the size of the graph. Finally, we give a spectral characterization of the small dense bipartite-like subgraphs by using the kkth \textit{largest} eigenvalue of the Laplacian of the graph.Comment: 17 pages; ISAAC 201

    Rings of real functions in pointfree topology

    Get PDF
    AbstractThis paper deals with the algebra F(L) of real functions on a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L).As applications, idempotent functions are characterized and previous pointfree results about strict insertion of functions are significantly improved: general pointfree formulations that correspond exactly to the classical strict insertion results of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces are derived.The paper ends with a brief discussion concerning the frames in which every arbitrary real function on the α-dissolution of the frame is continuous
    corecore