58 research outputs found

    Signal Transducers and Activators of Transcription-1 (STAT1) Regulates microRNA Transcription in Interferon γ-Stimulated HeLa Cells

    Get PDF
    Constructing and modeling the gene regulatory network is one of the central themes of systems biology. With the growing understanding of the mechanism of microRNA biogenesis and its biological function, establishing a microRNA-mediated gene regulatory network is not only desirable but also achievable.In this study, we propose a bioinformatics strategy to construct the microRNA-mediated regulatory network using genome-wide binding patterns of transcription factor(s) and RNA polymerase II (RPol II), derived using chromatin immunoprecipitation following next generation sequencing (ChIP-seq) technology. Our strategy includes three key steps, identification of transcription start sites and promoter regions of primary microRNA transcripts using RPol II binding patterns, selection of cooperating transcription factors that collaboratively function with the transcription factors targeted by ChIP-seq assay, and construction of the network that contains regulatory cascades of both transcription factors and microRNAs.Using CAMDA (Critical Assessment of Massive Data Analysis) 2009 data set that includes ChIP-seq data on RPol II and STAT1 (signal transducers and activators of transcription 1) in HeLa S3 cells in control condition and with interferon gamma stimulation, we first identified promoter regions of 83 microRNAs in HeLa cells. We then identified two potential STAT1 collaborating factors, AP-1 and C/EBP (CCAAT enhancer-binding proteins), and further established eight feedback network elements that may regulate cellular response during interferon gamma stimulation.This study offers a bioinformatics strategy to provide testable hypotheses on the mechanisms of microRNA-mediated transcriptional regulation, based upon genome-wide protein-DNA interaction data derived from ChIP-seq experiments

    Prioritization of disease microRNAs through a human phenome-microRNAome network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of disease-related microRNAs is vital for understanding the pathogenesis of diseases at the molecular level, and is critical for designing specific molecular tools for diagnosis, treatment and prevention. Experimental identification of disease-related microRNAs poses considerable difficulties. Computational analysis of microRNA-disease associations is an important complementary means for prioritizing microRNAs for further experimental examination.</p> <p>Results</p> <p>Herein, we devised a computational model to infer potential microRNA-disease associations by prioritizing the entire human microRNAome for diseases of interest. We tested the model on 270 known experimentally verified microRNA-disease associations and achieved an area under the ROC curve of 75.80%. Moreover, we demonstrated that the model is applicable to diseases with which no known microRNAs are associated. The microRNAome-wide prioritization of microRNAs for 1,599 disease phenotypes is publicly released to facilitate future identification of disease-related microRNAs.</p> <p>Conclusions</p> <p>We presented a network-based approach that can infer potential microRNA-disease associations and drive testable hypotheses for the experimental efforts to identify the roles of microRNAs in human diseases.</p

    miR2Disease: a manually curated database for microRNA deregulation in human disease

    Get PDF
    ‘miR2Disease’, a manually curated database, aims at providing a comprehensive resource of microRNA deregulation in various human diseases. The current version of miR2Disease documents 1939 curated relationships between 299 human microRNAs and 94 human diseases by reviewing more than 600 published papers. Around one-seventh of the microRNA–disease relationships represent the pathogenic roles of deregulated microRNA in human disease. Each entry in the miR2Disease contains detailed information on a microRNA–disease relationship, including a microRNA ID, the disease name, a brief description of the microRNA–disease relationship, an expression pattern of the microRNA, the detection method for microRNA expression, experimentally verified target gene(s) of the microRNA and a literature reference. miR2Disease provides a user-friendly interface for a convenient retrieval of each entry by microRNA ID, disease name, or target gene. In addition, miR2Disease offers a submission page that allows researchers to submit established microRNA–disease relationships that are not documented. Once approved by the submission review committee, the submitted records will be included in the database. miR2Disease is freely available at http://www.miR2Disease.org

    Prioritizing single-nucleotide variations that potentially regulate alternative splicing

    Get PDF
    Recent evidence suggests that many complex diseases are caused by genetic variations that play regulatory roles in controlling gene expression. Most genetic studies focus on nonsynonymous variations that can alter the amino acid composition of a protein and are therefore believed to have the highest impact on phenotype. Synonymous variations, however, can also play important roles in disease pathogenesis by regulating pre-mRNA processing and translational control. In this study, we systematically survey the effects of single-nucleotide variations (SNVs) on binding affinity of RNA-binding proteins (RBPs). Among the 10,113 synonymous SNVs identified in 697 individuals in the 1,000 Genomes Project and distributed by Genetic Analysis Workshop 17 (GAW17), we identified 182 variations located in alternatively spliced exons that can significantly change the binding affinity of nine RBPs whose binding preferences on 7-mer RNA sequences were previously reported. We found that the minor allele frequencies of these variations are similar to those of nonsynonymous SNVs, suggesting that they are in fact functional. We propose a workflow to identify phenotype-associated regulatory SNVs that might affect alternative splicing from exome-sequencing-derived genetic variations. Based on the affecting SNVs on the quantitative traits simulated in GAW17, we further identified two and four functional SNVs that are predicted to be involved in alternative splicing regulation in traits Q1 and Q2, respectively

    A modulated empirical Bayes model for identifying topological and temporal estrogen receptor α regulatory networks in breast cancer.

    Get PDF
    BACKGROUND: Estrogens regulate diverse physiological processes in various tissues through genomic and non-genomic mechanisms that result in activation or repression of gene expression. Transcription regulation upon estrogen stimulation is a critical biological process underlying the onset and progress of the majority of breast cancer. Dynamic gene expression changes have been shown to characterize the breast cancer cell response to estrogens, the every molecular mechanism of which is still not well understood. RESULTS: We developed a modulated empirical Bayes model, and constructed a novel topological and temporal transcription factor (TF) regulatory network in MCF7 breast cancer cell line upon stimulation by 17β-estradiol stimulation. In the network, significant TF genomic hubs were identified including ER-alpha and AP-1; significant non-genomic hubs include ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, and PITX2. Although the early and late networks were distinct (<5% overlap of ERα target genes between the 4 and 24 h time points), all nine hubs were significantly represented in both networks. In MCF7 cells with acquired resistance to tamoxifen, the ERα regulatory network was unresponsive to 17β-estradiol stimulation. The significant loss of hormone responsiveness was associated with marked epigenomic changes, including hyper- or hypo-methylation of promoter CpG islands and repressive histone methylations. CONCLUSIONS: We identified a number of estrogen regulated target genes and established estrogen-regulated network that distinguishes the genomic and non-genomic actions of estrogen receptor. Many gene targets of this network were not active anymore in anti-estrogen resistant cell lines, possibly because their DNA methylation and histone acetylation patterns have changed

    Chromatin structure characteristics of pre-miRNA genomic sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are non-coding RNAs with important roles in regulating gene expression. Recent studies indicate that transcription and cleavage of miRNA are coupled, and that chromatin structure may influence miRNA transcription. However, little is known about the relationship between the chromatin structure and cleavage of pre-miRNA from pri-miRNA.</p> <p>Results</p> <p>By analysis of genome-wide nucleosome positioning data sets from human and <it>Caenorhabditis elegans </it>(<it>C. elegans</it>), we found an enrichment of positioned nucleosome on pre-miRNA genomic sequences, which is highly correlated with GC content within pre-miRNA. In addition, obvious enrichments of three histone modifications (H2BK5me1, H3K36me3 and H4K20me1) as well as RNA Polymerase II (RNAPII) were observed on pre-miRNA genomic sequences corresponding to the active-promoter miRNAs and expressed miRNAs.</p> <p>Conclusion</p> <p>Our results revealed the chromatin structure characteristics of pre-miRNA genomic sequences, and implied potential mechanisms that can recognize these characteristics, thus improving pre-miRNA cleavage.</p

    The Influence of cis-Regulatory Elements on DNA Methylation Fidelity

    Get PDF
    It is now established that, as compared to normal cells, the cancer cell genome has an overall inverse distribution of DNA methylation (“methylome”), i.e., predominant hypomethylation and localized hypermethylation, within “CpG islands” (CGIs). Moreover, although cancer cells have reduced methylation “fidelity” and genomic instability, accurate maintenance of aberrant methylomes that underlie malignant phenotypes remains necessary. However, the mechanism(s) of cancer methylome maintenance remains largely unknown. Here, we assessed CGI methylation patterns propagated over 1, 3, and 5 divisions of A2780 ovarian cancer cells, concurrent with exposure to the DNA cross-linking chemotherapeutic cisplatin, and observed cell generation-successive increases in total hyper- and hypo-methylated CGIs. Empirical Bayesian modeling revealed five distinct modes of methylation propagation: (1) heritable (i.e., unchanged) high- methylation (1186 probe loci in CGI microarray); (2) heritable (i.e., unchanged) low-methylation (286 loci); (3) stochastic hypermethylation (i.e., progressively increased, 243 loci); (4) stochastic hypomethylation (i.e., progressively decreased, 247 loci); and (5) considerable “random” methylation (582 loci). These results support a “stochastic model” of DNA methylation equilibrium deriving from the efficiency of two distinct processes, methylation maintenance and de novo methylation. A role for cis-regulatory elements in methylation fidelity was also demonstrated by highly significant (p<2.2×10−5) enrichment of transcription factor binding sites in CGI probe loci showing heritably high (118 elements) and low (47 elements) methylation, and also in loci demonstrating stochastic hyper-(30 elements) and hypo-(31 elements) methylation. Notably, loci having “random” methylation heritability displayed nearly no enrichment. These results demonstrate an influence of cis-regulatory elements on the nonrandom propagation of both strictly heritable and stochastically heritable CGIs

    Modeling and correct the GC bias of tumor and normal WGS data for SCNA based tumor subclonal population inferring

    No full text
    Abstract Background Somatic copy number alternations (SCNAs) can be utilized to infer tumor subclonal populations in whole genome seuqncing studies, where usually their read count ratios between tumor-normal paired samples serve as the inferring proxy. Existing SCNA based subclonal population inferring tools consider the GC bias of tumor and normal sample is of the same fature, and could be fully offset by read count ratio. However, we found that, the read count ratio on SCNA segments presents a Log linear biased pattern, which influence existing read count ratios based subclonal inferring tools performance. Currently no correction tools take into account the read ratio bias. Results We present Pre-SCNAClonal, a tool that improving tumor subclonal population inferring by correcting GC-bias at SCNAs level. Pre-SCNAClonal first corrects GC bias using Markov chain Monte Carlo probability model, then accurately locates baseline DNA segments (not containing any SCNAs) with a hierarchy clustering model. We show Pre-SCNAClonal’s superiority to exsiting GC-bias correction methods at any level of subclonal population. Conclusions Pre-SCNAClonal could be run independently as well as serving as pre-processing/gc-correction step in conjuntion with exsiting SCNA-based subclonal inferring tools
    corecore