4 research outputs found

    Nonwoven polycaprolactone scaffolds for tissue engineering: The choice of the structure and the method of cell seeding

    No full text
    Nonwoven polycaprolactone materials produced by electrospinning are perspective internal prosthetic implants. Seeding these implants with multipotent mesenchymal stromal cells stimulates the replacement of the prosthesis with recipient's own connective tissue. Electrospinning method was used for producing polycaprolactone matrices differing in thickness, pore diameter, fiber size, and biomechanical properties. Labeled cells were seeded on scaffolds in three ways: (1) static, (2) dynamic, and (3) directed flow of the cell suspension generated by capillary action. Cell distribution on the surface and the interior of the scaffolds was studied; the metabolic activity of cells was measured by MTT assay. Static seeding method yielded fully confluence of cells covered the entire scaffold surface, but the cells were located primarily in the upper third of the matrix. Dynamic method proved to be effective only for scaffolds of thickness greater than 500 microns, irrespective of the pore diameter. The third method was effective only for scaffolds with the pore diameter of 20-30 microns, regardless of the material thickness. Resorbable nonwoven polycaprolactone electrospun materials have appropriate biomechanical properties and similar to native tissue matrix structures for internal prosthesis. The choice of the most effective cell seeding method depends on the spatial characteristics - the material thickness, pore diameter, and fibers size, which are determined by the electrospinning conditions

    НСтканыС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π° для Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ: Π²Ρ‹Π±ΠΎΡ€ структуры ΠΈ способа засСлСния

    No full text
    Nonwoven polycaprolactone materials produced by electrospinning are perspective internal prosthetic implants. Seeding these implants with multipotent mesenchymal stromal cells stimulates the replacement of the prosthesis with recipient's own connective tissue. Electrospinning method was used for producing polycaprolactone matrices differing in thickness, pore diameter, fiber size, and biomechanical properties. Labeled cells were seeded on scaffolds in three ways: (1) static, (2) dynamic, and (3) directed flow of the cell suspension generated by capillary action. Cell distribution on the surface and the interior of the scaffolds was studied; the metabolic activity of cells was measured by MTT assay. Static seeding method yielded fully confluence of cells covered the entire scaffold surface, but the cells were located primarily in the upper third of the matrix. Dynamic method proved to be effective only for scaffolds of thickness greater than 500 microns, irrespective of the pore diameter. The third method was effective only for scaffolds with the pore diameter of 20-30 microns, regardless of the material thickness. Resorbable nonwoven polycaprolactone electrospun materials have appropriate biomechanical properties and similar to native tissue matrix structures for internal prosthesis. The choice of the most effective cell seeding method depends on the spatial characteristics - the material thickness, pore diameter, and fibers size, which are determined by the electrospinning conditions.НСтканыС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования, ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСрспСктивными ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚Π°ΠΌΠΈ для эндопротСзирования. ЗасСлСниС Ρ‚Π°ΠΊΠΈΡ… ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ‚ΠΎΠ² ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ способствуСт Π·Π°ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΡ‚Π΅Π·Π° собствСнной ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΡŒΡŽ Ρ€Π΅Ρ†ΠΈΠΏΠΈΠ΅Π½Ρ‚Π°. ЦСлью настоящСго исслСдования являлось сравнСниС эффСктивности Ρ‚Ρ€Π΅Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² засСлСния ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π½Π΅Ρ‚ΠΊΠ°Π½Ρ‹Ρ… носитСлСй Π½Π° основС ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ пространствСнными характСристиками. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΏΠΎΠ»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ†, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΏΠΎΡ€ ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, биомСханичСскими свойствами. ЗасСлСниС носитСлСй ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ΠΌΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΡ‚Π΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Π·Π΅Π½Ρ…ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΏΡƒΠΏΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Ρ‚ΠΈΠΊΠ° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ трСмя способами: статичным, динамичСским ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ с использованиСм капиллярного эффСкта. ΠžΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ распрСдСлСниС ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠΎ повСрхности ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ измСряли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ МВВ-тСста. Π‘Ρ‚Π°Ρ‚ΠΈΡ‡Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ носитСли с Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ΠΌ повСрхности, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² основном Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΠΈΡΡŒ Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ Ρ‚Ρ€Π΅Ρ‚ΠΈ матрикса. ДинамичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ оказался эффСктивСн Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для носитСлСй Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ Π±ΠΎΠ»Π΅Π΅ 500 ΠΌΠΊΠΌ, нСзависимо ΠΎΡ‚ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΠΎΡ€. ΠœΠ΅Ρ‚ΠΎΠ΄ засСлСния с использованиСм капиллярного эффСкта Π±Ρ‹Π» эффСктивСн Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для носитСлСй с Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ ΠΏΠΎΡ€ 20-30 ΠΌΠΊΠΌ, нСзависимо ΠΎΡ‚ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Π‘ΠΈΠΎΡ€Π΅Π·ΠΎΡ€Π±ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Π½Π΅Ρ‚ΠΊΠ°Π½Ρ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π½Π° основС ΠΏΠΎ-Π»ΠΈΠΊΠ°ΠΏΡ€ΠΎΠ»Π°ΠΊΡ‚ΠΎΠ½Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктроформования, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ подходящими биомСханичСскими свойствами для выполнСния пластики Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² стСнок Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости, ΠΈΠΌΠ΅ΡŽΡ‚ сходноС с матриксом Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ строСниС. Π’Ρ‹Π±ΠΎΡ€ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° засСлСния носитСлСй ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ зависит ΠΎΡ‚ Π΅Π³ΠΎ пространствСнных характСристик - Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΠΎΡ€ ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ условиями элСктроформования ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°

    Bioengineered Bile Duct: the project resume and state of the art in 2018

    No full text
    Aim. Development of the physiologically relevant tissue-engineered graft for repair of bile duct injures (Dyuzheva et al., 2016). <br><br>Conclusions. Designed scaffold showed no cytotoxicity, both BM-MSCs and cholangiocytes migrated into the depth of fibrous material. The constructs was biodegradable in various model mediums: deionized water, phosphate buffer, bile, full culture medium. The next step is pre-clinical trials on rabbits and minipigs for assessment of implantation safety and efficacy. We suppose that this tubular multilayered tissue-engineered construct will be capable to integration in native tissues after implantation and may be used to injured bile duct reparation
    corecore