41 research outputs found

    Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation

    Full text link
    In this paper we demonstrate an active polarization drift compensation scheme for optical fibres employed in a quantum key distribution experiment with polarization encoded qubits. The quantum signals are wavelength multiplexed in one fibre along with two classical optical side channels that provide the control information for the polarization compensation scheme. This set-up allows us to continuously track any polarization change without the need to interrupt the key exchange. The results obtained show that fast polarization rotations of the order of 40*pi rad/s are effectively compensated for. We demonstrate that our set-up allows continuous quantum key distribution even in a fibre stressed by random polarization fluctuations. Our results pave the way for Bell-state measurements using only linear optics with parties separated by long-distance optical fibres

    Polarization-stable long-distance interference of independent photons for quantum communications

    Full text link
    Interference between fully-independent faint laser sources over two 8.5-km full polarization-controlled fiber links was performed, with stable visibility of 47.8%, an essential step towards practical implementation of quantum communication protocols

    GHz QKD at telecom wavelengths using up-conversion detectors

    Full text link
    We have developed a hybrid single photon detection scheme for telecom wavelengths based on nonlinear sum-frequency generation and silicon single-photon avalanche diodes (SPADs). The SPAD devices employed have been designed to have very narrow temporal response, i.e. low jitter, which we can exploit for increasing the allowable bit rate for quantum key distribution. The wavelength conversion is obtained using periodically poled Lithium niobate waveguides (W/Gs). The inherently high efficiency of these W/Gs allows us to use a continuous wave laser to seed the nonlinear conversion so as to have a continuous detection scheme. We also present a 1.27GHz qubit repetition rate, one-way phase encoding, quantum key distribution experiment operating at telecom wavelengths that takes advantage of this detection scheme. The proof of principle experiment shows a system capable of MHz raw count rates with a QBER less than 2% and estimated secure key rates greater than 100 kbit/s over 25 km.Comment: 12 pages, 7 figure

    Trapping microparticles in a structured dark focus

    Full text link
    We experimentally demonstrate stable trapping and controlled manipulation of silica microspheres in a structured optical beam consisting of a dark focus surrounded by light in all directions - the so-called Dark Focus Tweezer. Results from power spectrum and potential analysis demonstrate the non-harmonicity of the trapping potential landspace, which is reconstructed from experimental data in agreement to Lorentz-Mie numerical simulations. Applications of the dark tweezer in levitated optomechanics and biophysics are discussed.Comment: Final versio

    Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits

    Full text link
    We perform a proof-of-principle demonstration of the measurement-device-independent quantum key distribution (MDI-QKD) protocol using weak coherent states and polarization-encoded qubits over two optical fiber links of 8.5 km each. Each link was independently stabilized against polarization drifts using a full-polarization control system employing two wavelength-multiplexed control channels. A linear-optics-based polarization Bell-state analyzer was built into the intermediate station, Charlie, which is connected to both Alice and Bob via the optical fiber links. Using decoy-states, a lower bound for the secret-key generation rate of 1.04x10^-6 bits/pulse is computed

    Dengue Virus Type 4 Phylogenetics in Brazil 2011: Looking beyond the Veil

    Get PDF
    Dengue Fever and Dengue Hemorrhagic Fever are diseases affecting approximately 100 million people/year and are a major concern in developing countries. In the present study, the phylogenetic relationship of six strains of the first autochthonous cases of DENV-4 infection occurred in Sao Paulo State, Parana State and Rio Grande do Sul State, Brazil, 2011 were studied. Nucleotide sequences of the envelope gene were determined and compared with sequences representative of the genotypes I, II, III and Sylvatic for DEN4 retrieved from GenBank. We employed a Bayesian phylogenetic approach to reconstruct the phylogenetic relationships of Brazilian DENV-4 and we estimated evolutionary rates and dates of divergence for DENV-4 found in Brazil in 2011. All samples sequenced in this study were located in Genotype II. The studied strains are monophyletic and our data suggest that they have been evolving separately for at least 4 to 6 years. Our data suggest that the virus might have been present in the region for some time, without being noticed by Health Surveillance Services due to a low level of circulation and a higher prevalence of DENV-1 and DENV- 2
    corecore