354 research outputs found
Difficult or Impossible Facemask Ventilation in Children With Difficult Tracheal Intubation: A Retrospective Analysis of the PeDI Registry
BACKGROUND: Difficult facemask ventilation is perilous in children whose tracheas are difficult to intubate. We hypothesised that certain physical characteristics and anaesthetic factors are associated with difficult mask ventilation in paediatric patients who also had difficult tracheal intubation.
METHODS: We queried a multicentre registry for children who experienced difficult or impossible facemask ventilation. Patient and case factors known before mask ventilation attempt were included for consideration in this regularised multivariable regression analysis. Incidence of complications, and frequency and efficacy of rescue placement of a supraglottic airway device were also tabulated. Changes in quality of mask ventilation after injection of a neuromuscular blocking agent were assessed.
RESULTS: The incidence of difficult mask ventilation was 9% (483 of 5453 patients). Infants and patients having increased weight, being less than 5th percentile in weight for age, or having Treacher-Collins syndrome, glossoptosis, or limited mouth opening were more likely to have difficult mask ventilation. Anaesthetic induction using facemask and opioids was associated with decreased risk of difficult mask ventilation. The incidence of complications was significantly higher in patients with difficult mask ventilation than in patients without. Rescue placement of a supraglottic airway improved ventilation in 71% (96 of 135) of cases. Administration of neuromuscular blocking agents was more frequently associated with improvement or no change in quality of ventilation than with worsening.
CONCLUSIONS: Certain abnormalities on physical examination should increase suspicion of possible difficult facemask ventilation. Rescue use of a supraglottic airway device in children with difficult or impossible mask ventilation should be strongly considered
Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated. © 2012 Cicek et al
Gliding motility of Plasmodium merozoites
Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways
Gliding motility of Plasmodium merozoites.
Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways
Galex and optical observations of GW librae during the long decline from superoutburst
The prototype of accreting, pulsating white dwarfs (GW Lib) underwent a large amplitude dwarf nova outburst in 2007. We used ultraviolet data from Galaxy Evolution Explorer and ground-based optical photometry and spectroscopy to follow GW Lib for three years following this outburst. Several variations are apparent during this interval. The optical shows a superhump modulation in the months following outburst, while a 19 minute quasi-periodic modulation lasting for several months is apparent in the year after outburst. A long timescale (about 4 hr) modulation first appears in the UV a year after outburst and increases in amplitude in the following years. This variation also appears in the optical two years after outburst but is not in phase with the UV. The pre-outburst pulsations are not yet visible after three years, likely indicating the white dwarf has not returned to its quiescent state
Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation
The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts
Postexposure prophylaxis with rVSV-ZEBOV following exposure to a patient with Ebola virus disease relapse in the United Kingdom: an operational, safety, and immunogenicity report
Background:
In October 2015, 65 people came into direct contact with a healthcare worker presenting with a late reactivation of Ebola virus disease (EVD) in the UK. Vaccination was offered to 45 individuals with an initial assessment of high exposure risk.
Methods:
Approval for rapid expanded access to the recombinant vesicular stomatitis virus–Zaire Ebola virus vaccine (rVSV-ZEBOV) as an unlicensed emergency medicine was obtained from the relevant authorities. An observational follow-up study was carried out for 1 year following vaccination.
Results:
26/45 individuals elected to receive vaccination between October 10th and 11th 2015 following written informed consent. By day 14, 39% had seroconverted, rising to 87% by day 28 and 100% by 3 months, although these responses were not always sustained. Neutralising antibody responses were detectable in 36% by day 14 and 73% at 12 months. Common side effects included fatigue, myalgia, headache, arthralgia and fever. These were positively associated with glycoprotein (GP)-specific T-cell but not IgM or IgG antibody responses. No severe vaccine-related adverse events were reported. No-one exposed to the virus became infected.
Conclusions:
This paper reports the use of the rVSV-ZEBOV vaccine given as an emergency intervention to individuals exposed to a patient presenting with a late reactivation of EVD. The vaccine was relatively well tolerated but a high percentage developed a fever ≥37.5oC necessitating urgent screening for Ebola virus and a small number developed persistent arthralgia
- …