2,682 research outputs found

    Application of ERTS-1 imagery to the harvest model of the US Menhaden fishery

    Get PDF
    Preliminary results of an experiment to demonstrate the utility of ERTS-1 imagery for providing significant information to the harvest model of the menhaden industry are reported. Fisheries and related environmental data were obtained discontinuously throughout the 1973 menhaden (a surface schooling, coastal species) fishing season in Mississippi Sound. The unexpected complexity of the physical environment in Mississippi Sound precluded simplistic analysis of fish/environment relationships. Preliminary indications are that an association does exist between fish availability and differences in water transparency (turbidity) within the Sound. A clearer relationship is developing between major turbid features, imaged by ERTS-1 and location of successful fishing attempts. On all occasions where relatively cloudfree ERTS-1 overflight days coincided with fishery activity, overlays of catch location of ERTS-1 images show an association of school position with interfaces between imaged turbid features. Analysis is currently underway to determine persistence of such associations in an attempt to define minimum satellite return time necessary to maintain continuity of associations

    Perturbation expansions for a class of singular potentials

    Full text link
    Harrell's modified perturbation theory [Ann. Phys. 105, 379-406 (1977)] is applied and extended to obtain non-power perturbation expansions for a class of singular Hamiltonians H = -D^2 + x^2 + A/x^2 + lambda/x^alpha, (A\geq 0, alpha > 2), known as generalized spiked harmonic oscillators. The perturbation expansions developed here are valid for small values of the coupling lambda > 0, and they extend the results which Harrell obtained for the spiked harmonic oscillator A = 0. Formulas for the the excited-states are also developed.Comment: 23 page

    WASP-189b: an ultra-hot Jupiter transiting the bright A star HR 5599 in a polar orbit

    Full text link
    We report the discovery of WASP-189b: an ultra-hot Jupiter in a 2.72-d transiting orbit around the V=6.6V = 6.6 A star WASP-189 (HR 5599). We detected periodic dimmings in the star's lightcurve, first with the WASP-South survey facility then with the TRAPPIST-South telescope. We confirmed that a planet is the cause of those dimmings via line-profile tomography and radial-velocity measurements using the HARPS and CORALIE spectrographs. Those reveal WASP-189b to be an ultra-hot Jupiter (MPM_{\rm P} = 2.13 ±\pm 0.28 MJupM_{\rm Jup}; RPR_{\rm P} = 1.374 ±\pm 0.082 RJupR_{\rm Jup}) in a polar orbit (λ=89.3±1.4\lambda = 89.3 \pm 1.4^\circ; Ψ=90.0±5.8\Psi = 90.0 \pm 5.8^\circ) around a rapidly rotating A6IV-V star (TeffT_{\rm eff} = 8000 ±\pm 100 K; vsiniv_* \sin i_* \approx 100 km\, s1^{-1}). We calculate a predicted equilibrium temperature of TeqlT_{\rm eql} = 2641 ±\pm 34 K, assuming zero albedo and efficient redistribution, which is the third hottest for the known exoplanets. WASP-189 is the brightest known host of a transiting hot Jupiter and the third-brightest known host of any transiting exoplanet. We note that of the eight hot-Jupiter systems with TeffT_{\rm eff} >> 7000 K, seven have strongly misaligned orbits, and two of the three systems with TeffT_{\rm eff} \geq 8000 K have polar orbits (the third is aligned).Comment: Submitted to MNRAS. 10 pages, 9 figures, 3 table

    Local and global Fokker-Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal

    Full text link
    In transport barriers, particularly H-mode edge pedestals, radial scale lengths can become comparable to the ion orbit width, causing neoclassical physics to become radially nonlocal. In this work, the resulting changes to neoclassical flow and current are examined both analytically and numerically. Steep density gradients are considered, with scale lengths comparable to the poloidal ion gyroradius, together with strong radial electric fields sufficient to electrostatically confine the ions. Attention is restricted to relatively weak ion temperature gradients (but permitting arbitrary electron temperature gradients), since in this limit a delta-f (small departures from a Maxwellian distribution) rather than full-f approach is justified. This assumption is in fact consistent with measured inter-ELM H-Mode edge pedestal density and ion temperature profiles in many present experiments, and is expected to be increasingly valid in future lower collisionality experiments. In the numerical analysis, the distribution function and Rosenbluth potentials are solved for simultaneously, allowing use of the exact field term in the linearized Fokker-Planck collision operator. In the pedestal, the parallel and poloidal flows are found to deviate strongly from the best available conventional neoclassical prediction, with large poloidal variation of a different form than in the local theory. These predicted effects may be observable experimentally. In the local limit, the Sauter bootstrap current formulae appear accurate at low collisionality, but they can overestimate the bootstrap current near the plateau regime. In the pedestal ordering, ion contributions to the bootstrap and Pfirsch-Schluter currents are also modified

    Neuromuscular fatigue and recovery after strenuous exercise depends on skeletal muscle size and stem cell characteristics

    Get PDF
    Hamstring muscle injury is highly prevalent in sports involving repeated maximal sprinting. Although neuromuscular fatigue is thought to be a risk factor, the mechanisms underlying the fatigue response to repeated maximal sprints are unclear. Here, we show that repeated maximal sprints induce neuromuscular fatigue accompanied with a prolonged strength loss in hamstring muscles. The immediate hamstring strength loss was linked to both central and peripheral fatigue, while prolonged strength loss was associated with indicators of muscle damage. The kinematic changes immediately after sprinting likely protected fatigued hamstrings from excess elongation stress, while larger hamstring muscle physiological cross-sectional area and lower myoblast:fibroblast ratio appeared to protect against fatigue/damage and improve muscle recovery within the first 48 h after sprinting. We have therefore identified novel mechanisms that likely regulate the fatigue/damage response and initial recovery following repeated maximal sprinting in humans.</p

    Industrial work placement in higher education: a study of civil engineering student engagement

    Get PDF
    For civil engineering undergraduates, the opportunity to spend a period of time in formal industrial work placement provides an invaluable learning experience. This paper reviews student engagement with short-term industrial placement and provides analysis of questionnaires (n=174) returned by undergraduates studying civil engineering at four Higher Education Institutes (HEI’s) in the West of Scotland. The data captures industrial placement statistics, employability skill-sets and presents brief testimonies from students. Whilst the journey to becoming a professional civil engineer is undoubtedly enhanced by short-term placement clear opportunities exist for HEI’s to affect and change existing pedagogical discourse. Commentary is likely to resonate beyond civil engineering and serve as a timely reminder of the need to re-invigorate academia / industry curriculum partnerships

    Generalizability of Blood Pressure Lowering Trials to Older Patients: Cross‐Sectional Analysis

    Get PDF
    BACKGROUND/OBJECTIVES: Randomized controlled trials are used to inform clinical guidelines on the management of hypertension in older adults, but it is unclear to what extent these trials represent the general population attending routine clinical practice. This study aimed to define the proportion and characteristics of patients eligible for hypertension trials conducted in older people. DESIGN: Cross‐sectional study. SETTING: A total of 24 general practices in England. PARTICIPANTS: Anonymized electronic health record data from all individuals aged 80 and older. MEASUREMENTS: Descriptive statistics were used to define the proportion and characteristics of patients eligible for two previous medication intensification trials (HYVET, SPRINT) and one medication reduction trial (OPTiMISE). A logistic regression model was constructed to estimate predictors of eligibility for each trial. RESULTS: Of 15,376 patients identified, 268 (1.7%; 95% confidence interval [CI] = 1.5–2.0%), 5,290 (34.4%; 95%CI = 33.7–35.2%), and 3,940 (25.6%; 95%CI = 24.9–26.3%) were eligible for the HYVET, SPRINT, and OPTiMISE trials, respectively. Between 5.6% and 30.7% of exclusions from each trial were due to eligibility criteria excluding those with high or uncontrolled blood pressure. Frailty (odds ratio [OR] = .44; 95%CI = .36–.54 [OPTiMISE]), cardiovascular polypharmacy (OR = .61; 95%CI = .55–.68 [SPRINT]) and multimorbidity (OR = .72; 95%CI = .64–.82 [SPRINT]) were associated with a lower likelihood of being eligible for one or more of the trials. CONCLUSION: A possible unintended consequence of blood pressure criteria used by trials attempting to answer different primary questions is that for many older patients, no trial evidence exists to inform treatment decisions in routine practice. Caution should be exercised when applying results from existing trials to patients with frailty or multimorbidity

    Observational cosmology using characteristic numerical relativity: Characteristic formalism on null geodesics

    Full text link
    The characteristic formalism of numerical relativity is based on a system of coordinates aligned with outgoing null cones. While these coordinates were designed for studying gravitational waves, they can also be easily adapted to model cosmological past null cones (PNCs). Similar to observational coordinates in the observational approach to cosmology, this then provides a model that only makes use of information causally connected to an observer. However, the diameter distance, which is used as a radial coordinate, limits the model's cosmological application to the region prior to the PNC refocussing. This is because after refocussing, the diameter distance ceases to be a unique measure of distance. This paper addresses the problem by introducing a metric based on the Bondi-Sachs metric where the radial coordinate is replaced by an affine parameter. A model is derived from this metric and it is then shown how an existing numerical scheme can be adapted for simulation of cosmological PNC behaviour. Numerical calculations on this model are found to have the same stability and convergence properties as the standard characteristic formalism.Comment: 18 pages, 9 figures, 1 Table. arXiv admin note: some text overlap with arXiv:some 1007.318
    corecore