872 research outputs found
Recommended from our members
MR-guided focused ultrasound (MRgFUS) is effective for the distinct pattern of uterine fibroids seen in African-American women: data from phase III/IV, non-randomized, multicenter clinical trials
Background: Uterine fibroids are common among women at the reproductive age. Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a novel and a conservative treatment for symptomatic cases. The aim of the study was to evaluate the efficacy of MRgFUS in African-American (AA) women compared with that in non-African-Americans (non-AA). Methods: A single-armed phase IV study was conducted to establish the efficacy of treatment in AA women. Comparison of patient, fibroid, and treatment characteristics from this trial was compared with that of the previously published phase III trial. Both studies were approved by the IRB of each medical center. Results: Sixty-three AA and 59 non-AA women were treated with MRgFUS. Although AA women had a different pattern of disease, outcomes were similar in both groups. AA patients had a significant higher total number of fibroids compared with non-AA (median 6.0, interquartile range (IQR) 3.0–10.0 vs. 2.0, IQR 1.0–4.0, respectively, p < 0.001), although their total fibroid volume was significantly smaller (median 196.9 cm3, IQR 112.8–415.3 cm3 vs. 394.8 cm3, IQR 189.8–674.4 cm3, respectively, p < 0.001). AA women were younger compared with non-AA (mean ± SD 43.4 ± 5.1 vs. 46.3 ± 4.1 years of age, respectively, p = 0.001) when they presented for treatment. The rate of alternative treatments as well as fibroid-associated symptoms at follow-up time points (3, 6, 12, 24, and 36 months, period following MRgFUS treatment) did not differ according to race (p ≥ 0.62). Conclusion: Despite differences in the pattern of fibroid disease, MRgFUS for uterine fibroids has a similar efficacy for AA women compared with non-AA women
Transfer Learning for Domain Adaptation in MRI: Application in Brain Lesion Segmentation
Magnetic Resonance Imaging (MRI) is widely used in routine clinical diagnosis
and treatment. However, variations in MRI acquisition protocols result in
different appearances of normal and diseased tissue in the images.
Convolutional neural networks (CNNs), which have shown to be successful in many
medical image analysis tasks, are typically sensitive to the variations in
imaging protocols. Therefore, in many cases, networks trained on data acquired
with one MRI protocol, do not perform satisfactorily on data acquired with
different protocols. This limits the use of models trained with large annotated
legacy datasets on a new dataset with a different domain which is often a
recurring situation in clinical settings. In this study, we aim to answer the
following central questions regarding domain adaptation in medical image
analysis: Given a fitted legacy model, 1) How much data from the new domain is
required for a decent adaptation of the original network?; and, 2) What portion
of the pre-trained model parameters should be retrained given a certain number
of the new domain training samples? To address these questions, we conducted
extensive experiments in white matter hyperintensity segmentation task. We
trained a CNN on legacy MR images of brain and evaluated the performance of the
domain-adapted network on the same task with images from a different domain. We
then compared the performance of the model to the surrogate scenarios where
either the same trained network is used or a new network is trained from
scratch on the new dataset.The domain-adapted network tuned only by two
training examples achieved a Dice score of 0.63 substantially outperforming a
similar network trained on the same set of examples from scratch.Comment: 8 pages, 3 figure
Quantitative parameters in dynamic contrast-enhanced magnetic resonance imaging for the detection and characterization of prostate cancer
Objectives: to assess the diagnostic accuracy of quantitative parameters of DCE-MRI in multi-parametric MRI (mpMRI) in comparison to the histopathology (including Gleason grade) of prostate cancer.Patients and methods: 150 men with suspected prostate cancer (abnormal digital rectum examination and or elevated prostate-specific antigen) received pre-biopsy 3T mpMRI and were recruited into peer-reviewed, protocol-based prospective study. The DCE-MRI quantitative parameters (Ktrans (influx transfer constant) and kep (efflux rate constant)) of the cancerous and normal areas were recorded using four different kinetic models employing Olea Sphere (Olea Medical, La Ciotat, France). The correlation between these parameters and the histopathology of the lesions (biopsy and in a sub-cohort 41 radical prostatectomy specimen) was assessed.Results: The quantitative parameters showed a significant difference between non-cancerous (benign) and cancerous lesions (Gleason score≥3+3) in the prostate gland. The cut-off values for prostate cancer differentiation were: Ktrans (0.205 min-1) and kep (0.665 min-1) in the extended Tofts model (ET) and Ktrans(0.205 min-1 and kep (0.63 min-1) in the Lawrence and Lee delay (LD) models respectively. The mean Ktrans value also showed a difference between low-grade cancer (Gleason score=3+3) and high-grade cancer (Gleason score ≥ 3+4). With the addition of DCE-MRI quantitative parameters, the sensitivity of the PIRAD scoring system was increased from 56.6% to 92.1% (Ktrans_ET), 93.1% (kep_ET), 91.0%, (Ktrans_LD) and 89.4% (kep_LD).Conclusion: Quantitative DCE-MRI parameters improved the diagnostic performance of conventional MRI in distinguishing normal and prostate cancers, including characterization of grade of cancers. The ET and LD models in post-image processing analysis provided better cut-off values for prostate cancer differentiation than the other quantitative DCE-MRI parameters
Transforming Cancer Care: NCIGT’s Trailblazing Journey in Image-Guided Therapy for Prostate Cancer
Clare M. Tempany, MD
Center Director, National Center for Image Guided Therapies
Vice-Chair of Radiology Research, Brigham & Women’s Hospital
Ferenc Jolesz MD Professor of Radiology, Harvard Medical Schoolhttps://openworks.mdanderson.org/igct_seminars/1006/thumbnail.jp
Investigation of active tracking for robotic arm assisted magnetic resonance guided focused ultrasound ablation
Background: Focused ultrasound surgery (FUS) is a technique that does not need invasive access to the patient while allowing precise targeted therapy. Magnetic resonance (MR) guided FUS provides capabilities for monitoring treatments. Considering that the targeted tumours are distributed at different positions, focus repositioning becomes necessary.Methods: We used an MR compatible robot to increase the operational range of FUS application. Active tracking was developed to detect the robotic arm in regards to the MR coordinate system. The purpose of this study was to construct active tracking to allow a wide spatial range of repositioning the FUS transducer that is fast and accurate. The technique was characterised and validated by a series of positioning tests to prove its efficiency for guiding the robot.Results: In the calibration range, the tracking could achieve an accuracy of RMS=0.63 mm. Results of phantom ablation showed a focal scanning precision of Δx=0.4±0.37 mm, Δy=0.4±0.28 mm and Δz=0.7±0.66 mm.Conclusions: The active tracking localisation can be considered as a feasible approach for the MR guided FUS system positioned by a robot
In Vivo Quantification of Placental Insufficiency by BOLD MRI: A Human Study
Fetal health is critically dependent on placental function, especially placental transport of oxygen from mother to fetus. When fetal growth is compromised, placental insufficiency must be distinguished from modest genetic growth potential. If placental insufficiency is present, the physician must trade off the risk of prolonged fetal exposure to placental insufficiency against the risks of preterm delivery. Current ultrasound methods to evaluate the placenta are indirect and insensitive. We propose to use Blood-Oxygenation-Level-Dependent (BOLD) MRI with maternal hyperoxia to quantitatively assess mismatch in placental function in seven monozygotic twin pairs naturally matched for genetic growth potential. In-utero BOLD MRI time series were acquired at 29 to 34 weeks gestational age. Maps of oxygen Time-To-Plateau (TTP) were obtained in the placentas by voxel-wise fitting of the time series. Fetal brain and liver volumes were measured based on structural MR images. After delivery, birth weights were obtained and placental pathological evaluations were performed. Mean placental TTP negatively correlated with fetal liver and brain volumes at the time of MRI as well as with birth weights. Mean placental TTP positively correlated with placental pathology. This study demonstrates the potential of BOLD MRI with maternal hyperoxia to quantify regional placental function in vivo.National Institutes of Health (U.S.) (Grant U01 HD087211)National Institutes of Health (U.S.) (Grant R01 EB017337
Tuned Out. Traditional Music and Identity in Northern Ireland
Tuned Out offers a lively and informative history of traditional music in Ireland in which the author attempts to account for the increasing absence of Protestant musicians from the contemporary traditional music scene. By re-visiting the significance of the revival period for traditional music and demonstrating an acute awareness of how the political context shaped both opinion and practice, the author presents an original and multi-faceted piece of work which will make a worthy contribution..
- …
