30 research outputs found
IMMUNOHISTOCHEMISTRY EXPRESSION OF KLOTHO IN BONE MARROW BIOPSIES FROM NORMAL, MGUS, AND PLASMA CELL MYELOMA
poster abstractKlotho is an anti-aging gene, which has been shown to inhibit the insulin and insulin-like growth factor 1 (IGF-1) pathways in mice hepatocytes and myocytes. Immunochemistry analysis of Klotho expression in breast tissue arrays revealed high expression in normal breast, but very low expression in breast cancer. In this study we examined eight normal bone marrow, eight MGUS (monoclonal gammopathy of undetermined significance), and forty-two cases of plasma cell myeloma by immunohistochemistry with the Klotho antibody.
The immunostaining of the Klotho antibody was localized in the cyto-plasm and as punctate granular staining of myeloma cells in the marrow. In the accompanying bone marrow clots, Klotho was seen as strong punctate granules on myeloma cells and not on other peripheral white blood cells. There was no staining of plasma cells in the eight normal bone marrow cas-es. Slight cytoplasmic staining was seen in myeloid series of cells in the normal bone marrow and in megakaryocytes. In the eight MGUS cases, there was very minimal cytoplasmic staining in a few of the myeloma cells. Minimal staining was seen in the myeloid series of cells in the marrow in these cases. Klotho was highly expressed in the myeloma cases and no staining in the normal and MGUS cases.
In conclusion, Klotho was highly expressed in patients with myeloma in myelomas cells in the bone marrow.
This project was sponsored by the Life Health Science Internship Progra
BreastDefend enhances effect of tamoxifen in estrogen receptor-positive human breast cancer in vitro and in vivo
BACKGROUND:
Tamoxifen (TAM) has been widely used for the treatment of estrogen receptor (ER)-positive breast cancer and its combination with other therapies is being actively investigated as a way to increase efficacy and decrease side effects. Here, we evaluate the therapeutic potential of co-treatment with TAM and BreastDefend (BD), a dietary supplement formula, in ER-positive human breast cancer.
METHODS:
Cell proliferation and apoptosis were determined in ER-positive human breast cancer cells MCF-7 by MTT assay, quantitation of cytoplasmic histone-associated DNA fragments and expression of cleaved PARP, respectively. The molecular mechanism was identified using RNA microarray analysis and western blotting. Tumor tissues from xenograft mouse model were analyzed by immunohistochemistry.
RESULTS:
Our data clearly demonstrate that a combination of 4-hydroxytamoxifen (4-OHT) with BD lead to profound inhibition of cell proliferation and induction of apoptosis in MCF-7 cells. This effect is consistent with the regulation of apoptotic and TAM resistant genes at the transcription and translation levels. Importantly, TAM and BD co-treatment significantly enhanced apoptosis, suppressed tumor growth and reduced tumor weight in a xenograft model of human ER-positive breast cancer.
CONCLUSION:
BD sensitized ER-positive human breast cancer cells to 4-OHT/TAM treatment in vitro and in vivo. BreastDefend can be used in an adjuvant therapy to increase the therapeutic effect of tamoxifen in patients with ER-positive breast cancer
Critical role of phosphorylation of serine 165 of YBX1 on the activation of NF- B in colon cancer
poster abstractY-box binding protein 1 (YBX1) is a multifunctional protein known to facilitate many of
the hallmarks of cancer. Elevated levels of YBX1 protein are highly correlated with
cancer progression, making it an excellent marker in cancer. The connection between
YBX1 and the important nuclear factor B (NF-B), has never been previously reported.
Here, we show that overexpression of wild type YBX1 (wtYBX1) activates NF-B,
suggesting that YBX1 is a potential NF-B activator. Furthermore, using mass
spectrometry analysis, we identified novel phosphorylation of serine 165 (S165) on
YBX1. Overexpression of the S165A-YBX1 mutant in either 293 cells or colon cancer
HT29 cells showed dramatically reduced NF-B activating ability as compared to that of
wtYBX1, confirming that S165 phosphorylation is critical for the activation of NF-B by
YBX1. We further show that expression of the S165A-YBX1 mutant dramatically
decreased the expression of NF-B-inducible genes, reduced cell growth, and
compromised tumorigenic ability as compared to wtYBX1. Taken together, we provide
the first evidence that YBX1 functions as a tumor promoter via NF-B activation, and
phosphorylation of S165 of YBX1 is critical for this function. Therefore, our important
discovery may lead to blocking S165 phosphorylation as a potential therapeutic strategy
to treat colon cancer
Critical role of phosphorylation of serine 165 of YBX1 on the activation of NF-κB in colon cancer.
Y-box binding protein 1 [YBX1] is a multifunctional protein known to facilitate many of the hallmarks of cancer. Elevated levels of YBX1 protein are highly correlated with cancer progression, making it an excellent marker in cancer. The connection between YBX1 and the important nuclear factor κB [NF-κB] has never been reported. Here, we show that overexpression of wild type YBX1 [WT-YBX1] activates NF-κB, suggesting that YBX1 is a potential NF-κB activator. Furthermore, using mass spectrometry analysis we identified novel phosphorylation of serine 165 [S165] on YBX1. Overexpression of the S165A-YBX1 mutant in either HEK293 cells or colon cancer HT29 cells showed dramatically reduced NF-κB activating ability as compared with that of WT-YBX1, confirming that S165 phosphorylation is critical for the activation of NF-κB by YBX1. We also show that expression of the S165A-YBX1 mutant dramatically decreased the expression o
Adenoviral Vectors Expressing Human Endostatin–Angiostatin and Soluble Tie2: Enhanced Suppression of Tumor Growth and Antiangiogenic Effects in a Prostate Tumor Model
Angiogenesis is essential for prostate cancer development and metastasis. Antiangiogenic therapy targeting tumor neovasculature, therefore, represents a promising approach for prostate cancer treatment. We hypothesized that adenoviral-mediated delivery of a combination of antiangiogenic factors might have an enhanced antitumor response. We developed the adenoviral vectors Ad-hEndo-angio, expressing a unique, chimeric human endostatin–angiostatin fusion protein, and Ad-sTie2, expressing a soluble form of endothelium-specific receptor tyrosine kinase Tie2. Matrigel angiogenesis assays using Ad-hEndo-angio revealed significant inhibition of tubular network formation and endothelial sprouting compared to Ad-sTie2. In vivo studies in a bilateral PC-3 tumor xenograft model following either intratumoral or systemic administration of Ad-hEndo-angio led to enhanced tumor growth suppression compared to Ad-sTie2. A novel finding is that an intratumoral, combination therapy employing one-half the dose of Ad-hEndo-angio as well as Ad-sTie2 led to a complete regression of the injected, as well as the contralateral uninjected, tumor and prolonged the tumor-free survival in 80% of the animals. In addition, a novel, real-time, intravital imaging modality was used to monitor antiangiogenic responses following adenoviral-mediated gene transfer. These results suggest that a combinatorial antiangiogenic gene therapy approach involving Ad-hEndo-angio and Ad-sTie2 could become a novel form of treatment for localized human prostate cancer
Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs
Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS
Hypoxia-Inducible Factor-1α Regulates CD55 in Airway Epithelium
Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium
Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic acute kidney injury
Decreased renal blood flow following an ischemic insult contributes to a reduction in glomerular filtration. However, little is known about the underlying cellular or subcellular mechanisms mediating reduced renal blood flow in human ischemic acute kidney injury (AKI) or acute renal failure (ARF). To examine renal vascular injury following ischemia, intraoperative graft biopsies were performed after reperfusion in 21 cadaveric renal allografts. Confocal fluorescence microscopy was utilized to examine vascular smooth muscle and endothelial cell integrity as well as peritubular interstitial pericytes in the biopsies. The reperfused, transplanted kidneys exhibited postischemic injury to the renal vasculature, as demonstrated by disorganization/disarray of the actin cytoskeleton in vascular smooth muscle cells and disappearance of von Willebrand factor from vascular endothelial cells. Damage to peritubular capillary endothelial cells was more severe in subjects destined to have sustained ARF than in those with rapid recovery of their graft function. In addition, peritubular pericytes/myofibroblasts were more pronounced in recipients destined to recover than those with sustained ARF. Taken together, these data suggest damage to the renal vasculature occurs after ischemia-reperfusion in human kidneys. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic AKI
Kidney in VHL disease: Early clear cell proliferation occurs in the distal tubular system
Renal clear cell carcinoma commonly occurs in patients with von Hippel-Lindau disease (VHL). Kidneys of VHL disease patients (VHL kidneys) contain an abundance of independent clear cell proliferation events that have been hypothesized to represent precursor structures of clear cell carcinoma. In the present study, it was tried to identify the site of origin of clear cell proliferation, and the immunophenotype of clear cells. Using 3D histological tracking, the topographic origin of microscopic clear cell proliferation was investigated by identification of informative structures of interest and immunohistochemical staining for cluster of differentiation 10 (CD10) and cytokeratin 7 (CK7) in consecutive serial sections. In addition, the CD10/CK7 immunophenotype of proliferating clear cells was evaluated. Clear cell proliferation uniformly occurred in the distal tubular system. Some clear cell proliferation, however, revealed proximal tubule immunophenotype. It was concluded that early proliferation of VHL-deficient clear cells occurs in the distal tubular system. Despite the association with the distal tubular system, the immunohistochemical profile of early clear cell proliferation may be inconsistent with its distal tubular origin