8 research outputs found

    Electrical Properties of a p–n Heterojunction of Li-Doped NiO and Al-Doped ZnO for Thermoelectrics

    No full text
    The electrical properties of a p–n heterojunction of polycrystalline p-type Ni0.98Li0.02O and n-type Zn0.98Al0.02O have been investigated for potential applications in high-temperature oxide-based thermoelectric generators without metallic interconnects. Current–voltage characteristics of the junction were measured in a two-electrode setup in ambient air at 500–1000°C. The resistance and rectification of the junction decreased with increasing temperature. A non-ideal Shockley diode model was used to fit the measured current–voltage data in order to extract characteristic parameters of the junction, such as area specific series resistance Rs and parallel shunt resistance Rp, non-ideality factor, and the saturation current density. Rs and Rp decreased exponentially with temperature, with activation energies of 0.4 ± 0.1 eV and 1.1 ± 0.2 eV, respectively. The interface resistance of the direct p–n junction studied here is as such too high for practical applications in thermoelectrics. However, it is demonstrated that it can be reduced by an order of magnitude by using a composite of the individual materials at the interface, yielding a large effective contact area

    Composite of bentonite/CoFe2O4/hydroxyapatite for adsorption of Pb (II)

    No full text
    In this contribution, a composite from bentonite (B), CoFe _2 O _4 (CF), and hydroxyapatite (HAP) was developed by chemical synthesis route for adsorption of a lead ion, Pb (II) from wastewater. Initially, a composite of B/CF was synthesized by varying the weight ratio of CF, i.e., (1– x )B/( x )CF ( x  = 0.05, 0.15, 0.25, 0.50), followed by ternary composite synthesis, which was formulated from the sample of (0.85B/0.15CF) and different weight ratios of HAP, i.e., (1– y )[(0.85B/0.15CF)]/ y HAP where y  = 0.25, 0.35 and 0.45 weight ratios of HAP. The sample of 0.85B/0.15CF was found to be optimal in its adsorption capacity of about 20 mg g ^−1 from the binary composite samples, while among the ternary composites, a sample with a composition of 0.65[(0.85B/0.15CF)]/0.35HAP revealed an optimum adsorption capacity of about 36 mg g ^−1 , which was then selected for further studies. The adsorption kinetics of Pb (II) by the optimum 0.65[(0.85B/0.15CF)]/0.35HAP sample was studied at different contact times from 30–120 min, where the equilibrium was reached at around 90 min of contact time and the kinetic behavior adopted Pseudo-second order adsorption mechanism. The initial concentration of Pb (II) was also varied from 50–200 mg l ^−1 to study the adsorption isotherm, which resulted that adsorption capacity of 0.65[(0.85B/0.15CF)]/0.35HAP towards Pb (II) was increased to about 66 mg g ^−1 and the adsorption isotherm data best fitted with Langmuir adsorption isotherm model. Therefore, the result of this study pinpoints that the present composite material is a potential candidate for the adsorption of Pb (II) ion

    Inter-diffusion across a direct p-n heterojunction of Li-doped NiO and Al-doped ZnO

    No full text
    We herein report inter-diffusion across the interface between p-type Ni0.98Li0.02O and n-type Zn0.98Al0.02O for various applications including p-n-heterojunction diodes and oxide thermoelectrics. Diffusion couples were made of polished surfaces of ceramic samples pre-sintered at 1250 and 1350 °C for Ni0.98Li0.02O and Zn0.98Al0.02O, respectively. The inter-diffusion couples were annealed at 900–1200 °C for 160 h in ambient air. Electron Probe Micro Analysis (EPMA) was used to acquire diffusion profiles, followed by fitting to Fick's second law and Whipple–Le Claire's models for bulk and grain-boundary diffusion calculation, respectively. Zn2+ diffused into Ni0.98Li0.02O mainly by bulk diffusion with an activation energy of 250 ± 10 kJ/mol, whereas Ni2+ diffused into Zn0.98Al0.02O by both bulk and enhanced grain boundary diffusion with activation energies of 320 ± 120 kJ/mol and 245 ± 50 kJ/mol, respectively. The amount of Al3+ diffused from the Al-doped ZnO into the NiO phase was too small for a corresponding diffusion coefficient to be calculated. Li-ion distribution and diffusivity were not determined due to lack of analyzer sensitivity for Li. The bulk and effective diffusivities of Zn2+ and Ni2+ into NiO and ZnO enable prediction of inter-diffusion lengths as a function of time and temperature, allowing estimates of device performance, stability, and lifetimes at different operation temperatures

    Performance of a thermoelectric module based on n-type (La0.12Sr0.88)0.95TiO3-δ and p-type Ca3Co4-xO9+δ

    No full text
    Here, we present the performance of a thermoelectric (TE) module consisting of n-type (La0.12Sr0.88)0.95TiO3 and p-type Ca3Co4-xO9+δ materials. The main challenge in this investigation was operation of TE module in different atmosphere conditions, since n-type has its optimum TE-performance at reducing, while p-type at oxidizing conditions. The TE module was exposed to two different atmospheres and demonstrated higher stability in N2 atmosphere than in air. The maximum electrical power output decreased after 40 h when the hot side was exposed to N2 at 600 °C, while only 1 h at 400 °C in ambient air was enough to oxidize (La0.12Sr0.88)0.95TiO3 followed by a reduced electrical power output. The module generated a maximum electrical power of 0.9 mW (~ 4.7 mW/cm2) at 600 °C hot side and ΔT ~ 570 K in N2, while 0.15 mW (~ 0.8 mW/cm2) at 400 °C hot side and ΔT ~ 370 K in air. A stability limit of Ca3Co3.93O9+δ at ~ 700 °C in N2 was determined by in situ high-temperature X-ray diffraction.publishedVersionPaid Open AccessUNIT agreemen

    Chemical tracer diffusion of Sr and Co in polycrystalline Ca-deficient CaMnO3-δ with CaMn2O4 precipitates

    No full text
    Diffusivity on the A- and B-site of polycrystalline perovskite CaMnO3-δ with Ca deficiency and spinel CaMn2O4 (marokite) as a secondary phase was studied using chemical tracers and secondary ion mass spectrometry (SIMS) complemented by electron probe microanalysis (EPMA). Thin films containing Sr and Co chemical tracers were deposited on the polished surface of the polycrystalline composite sample followed by annealing at 800 – 1200 °C for 96 h. Diffusion profiles for each tracer were determined with SIMS, followed by calculation of diffusion coefficients by fitting to appropriate models. The Sr tracer showed mainly lattice diffusion, with an activation energy of 210±30 kJ/mol, whereas the Co tracer showed a combination of lattice and enhanced grain-boundary diffusion, with activation energies of 270±30 kJ/mol and 380±40 kJ/mol, respectively. The diffusivities may be used to predict interdiffusion and lifetime of junctions between n-type CaMnO3-δ or CaMnO3-δ/CaMn2O4 composites and metallization interlayers or p-type leg materials in oxide thermoelectrics. In particular, the relatively high effective diffusivity of Co in polycrystalline CaMnO3 δ may play a role in the reported fast formation of the secondary phase (Ca3Co2-yMnyO6) between p-type Ca3Co3.92O9+δ and n-type CaMnO3-δ in a direct p-n thermoelectric junction

    Chemical tracer diffusion of Sr and Co in polycrystalline Ca-deficient CaMnO3-δ with CaMn2O4 precipitates

    No full text
    Diffusivity on the A- and B-site of polycrystalline perovskite CaMnO3-δ with Ca deficiency and spinel CaMn2O4 (marokite) as a secondary phase was studied using chemical tracers and secondary ion mass spectrometry (SIMS) complemented by electron probe microanalysis (EPMA). Thin films containing Sr and Co chemical tracers were deposited on the polished surface of the polycrystalline composite sample followed by annealing at 800 – 1200 °C for 96 h. Diffusion profiles for each tracer were determined with SIMS, followed by calculation of diffusion coefficients by fitting to appropriate models. The Sr tracer showed mainly lattice diffusion, with an activation energy of 210±30 kJ/mol, whereas the Co tracer showed a combination of lattice and enhanced grain-boundary diffusion, with activation energies of 270±30 kJ/mol and 380±40 kJ/mol, respectively. The diffusivities may be used to predict interdiffusion and lifetime of junctions between n-type CaMnO3-δ or CaMnO3-δ/CaMn2O4 composites and metallization interlayers or p-type leg materials in oxide thermoelectrics. In particular, the relatively high effective diffusivity of Co in polycrystalline CaMnO3 δ may play a role in the reported fast formation of the secondary phase (Ca3Co2-yMnyO6) between p-type Ca3Co3.92O9+δ and n-type CaMnO3-δ in a direct p-n thermoelectric junction

    Green synthesis of Co-doped ZnO via the accumulation of cobalt ion onto Eichhornia crassipes plant tissue and the photocatalytic degradation efficiency under visible light

    No full text
    Nowadays, water pollution is a major concern to the globe. For this reason, various research works has been done to access pure water thereby minimizing the effect of pollutants. In this work, the cobalt doped ZnO (Co-doped ZnO) via the accumulation of cobalt ion onto Eichhornia crassipes plant tissue for different days and combined with zinc precursor was synthesized. The resulting catalyst powder samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), and Ultraviolet–vis (UV–vis) spectroscopy, and microwave plasma atomic emission spectrometer (MP-AES). The catalysts were also tested for the photocatalytic degradation of methylene blue (MB) in the presence of H _2 O _2 under visible light irradiation. The best catalytic activity was gained by the 8th-days accumulation of cobalt ion onto the Eichhornia crassipes plant tissue and 99.6% of the dye was degraded within 45 min. However, 69.6, 65.7, 73.6, and 94.8% of MB dye was degraded by 1, 2, 4, and 6 days accumulations. Hence, removal of toxic heavy metal by using Eichhornia crassipes plant and recycling in the wastewater treatment gain is highly appreciated. Moreover, the Co-doped ZnO photocatalysts could enhance the photocatalytic activities due to suppressing of the electron and hole recombination and the porosity of the catalysts resulted from the Eichhornia crassipes plant after calcination
    corecore