12 research outputs found

    Ordering of binary colloidal crystals by random potentials

    Get PDF
    Structural defects are ubiquitous in condensed matter, and not always a nuisance. For example, they underlie phenomena such as Anderson localization and hyperuniformity, and they are now being exploited to engineer novel materials. Here, we show experimentally that the density of structural defects in a 2D binary colloidal crystal can be engineered with a random potential. We generate the random potential using an optical speckle pattern, whose induced forces act strongly on one species of particles (strong particles) and weakly on the other (weak particles). Thus, the strong particles are more attracted to the randomly distributed local minima of the optical potential, leaving a trail of defects in the crystalline structure of the colloidal crystal. While, as expected, the crystalline ordering initially decreases with an increasing fraction of strong particles, the crystalline order is surprisingly recovered for sufficiently large fractions. We confirm our experimental results with particle-based simulations, which permit us to elucidate how this non-monotonic behavior results from the competition between the particle-potential and particle-particle interactions

    Folding of small proteins: A matter of geometry?

    Full text link
    We review some of our recent results obtained within the scope of simple lattice models and Monte Carlo simulations that illustrate the role of native geometry in the folding kinetics of two state folders.Comment: To appear in Molecular Physic

    Sculpting liquid crystal skyrmions with external flows

    No full text
    We investigate, using experiments and numerical simulations, the distortions and the alignment of skyrmions in liquid crystal under external flows for a range of average flow velocities. The simulations are based on the Landau-de Gennes Q-tensor theory both for isolated as well as for systems with many skyrmions. We found striking flow-driven elongation of an isolated skyrmion and flow alignment of skyrmions in the many-skyrmion system, both of which are also observed in the experiments. In the simulations, particular attention was given to the dissipation rate and to the various dissipation channels for a single skyrmion under external flow. This analysis provides insight on the observed scaling regime of the elongation of isolated flowing skyrmions and revealed a surprising plastic response at very short times, which may be relevant in applications based on the alignment of soft structures such as liquid crystal skyrmions
    corecore