10 research outputs found

    Effects of FGF-2 and EGF removal on the differentiation of mouse neural precursor cells

    Get PDF
    Cell therapy for neurological disorders has advanced, and neural precursor cells (NPC) may become the ideal candidates for neural transplantation in a wide range of diseases. However, additional work has to be done to determine either the ideal culture environment for NPC expansion in vitro, without altering their plasticity, or the FGF-2 and EGF mechanisms of cell signaling in neurospheres growth, survival and differentiation. In this work we evaluated mouse neurospheres cultured with and without FGF-2 and EGF containing medium and showed that those growth factors are responsible for NPC proliferation. It is also demonstrated that endogenous production of growth factors shifts from FGF-2 to IGF-1/PDGFb upon EGF and FGF-2 withdrawal. Mouse NPC cultured in suspension showed different patterns of neuronal localization (core versus shell) for both EGF and FGF-2 withdrawal and control groups. Taken together, these results show that EGF and FGF-2 removal play an important role in NPC differentiation and may contribute to a better understanding of mechanisms of NPC differentiation. Our findings suggest that depriving NPC of growth factors prior to grafting might enhance their chance to effectively integrate into the host.As terapias celulares para doenças neurológicas têm avançado e células precursoras neurais (NPC) surgem como candidatas ideais para o transplante de células neurais em muitas doenças. No entanto, trabalhos adicionais devem ser feitos para determinar o ambiente de cultivo ideal para a expansão in vitro das NPC, sem alterar sua plasticidade, e os mecanismos de sinalização celular do fator de crescimento epidérmico (EGF) e fator de crescimento de fibroblasto 2 (FGF-2) no crescimento, sobrevivência e diferenciação da neuroesfera. Nesse trabalho avaliamosNPCcultivadas na presença e na ausência de FGF-2 e EGF e mostramos que esses fatores de crescimento são responsáveis pela proliferação das NPC. Também foi demonstrado que a produção endógena de fatores de crescimento alterna de FGF-2 a fator de crescimento de insulina 1 (IGF-1) e fator de crescimento derivado de plaquetas b (PDGFb) após remoção de EGF e FGF-2. NPC de camundongo cultivadas em suspensão mostraram padrões de localização neuronal distintos (centro versus borda) tanto no grupo controle como no grupo sem EGF e FGF-2. Juntos, esses resultados mostram que a remoção de EGF e FGF-2 exerce importante ação na diferenciação de NPC e possivelmente contribui para melhor compreensão dos mecanismos envolvidos na diferenciação. Nossos achados sugerem que, privando as NPC de fatores de crescimento antes do transplante, talvez aumente as chances de que as células efetivamente se integrem ao hospedeiro.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo (UNIFESP) Departamento de FisiologiaUniversidade Federal de São Paulo (UNIFESP) Departamento de BiofísicaUNIFESP, Depto. de FisiologiaUNIFESP, Depto. de BiofísicaSciEL

    Short-Term Withdrawal of Mitogens Prior to Plating Increases Neuronal Differentiation of Human Neural Precursor Cells

    Get PDF
    Background: Human neural precursor cells (hNPC) are candidates for neural transplantation in a wide range of neurological disorders. Recently, much work has been done to determine how the environment for NPC culture in vitro may alter their plasticity. Epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) are used to expand NPC; however, it is not clear if continuous exposure to mitogens may abrogate their subsequent differentiation. Here we evaluated if short-term removal of FGF-2 and EGF prior to plating may improve hNPC differentiation into neurons.Principal Findings: We demonstrate that culture of neurospheres in suspension for 2 weeks without EGF-FGF-2 significantly increases neuronal differentiation and neurite extension when compared to cells cultured using standard protocols. in this condition, neurons were preferentially located in the core of the neurospheres instead of the shell. Moreover, after plating, neurons presented radial rather than randomly oriented and longer processes than controls, comprised mostly by neurons with short processes. These changes were followed by alterations in the expression of genes related to cell survival.Conclusions: These results show that EGF and FGF-2 removal affects NPC fate and plasticity. Taking into account that a three dimensional structure is essential for NPC differentiation, here we evaluated, for the first time, the effects of growth factors removal in whole neurospheres rather than in plated cell culture.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institutos do Milenio de Bioengenharia TecidualUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilUniv Fed Rio de Janeiro, Inst Ciencias Biomed, BR-21941 Rio de Janeiro, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Biophys, São Paulo, BrazilFAPESP: fellowCNPq: fellowWeb of Scienc

    Role of cyclin D1 in the interaction between FGF-2, ACTH and other peptides in Y-1 adrenocortical cell signaling

    No full text
    O principal controle do ciclo celular de mamíferos, que é dividido em G0/G1/S/G2/M, ocorre na transição G0→G1→S. Nesta tese mostramos que a proteína ciclina D1 desempenha um papel fundamental nos circuitos de transdução de sinais que regulam a transição G0→G1→S na linhagem Y-1 de células adrenocorticais de camundongo. Esta conclusão não é surpreendente, uma vez que, ao longo dos últimos anos, muitos laboratórios contribuíram para estabelecer a noção de que a atividade das diversas formas do complexo ciclina/CDK é essencial para a transição G0→G1→S, e também para outras etapas do ciclo celular. Em células Y-1, FGF-2 induz tardiamente (5-6h) a expressão do gene e da proteína ciclina D 1, através de um processo dependente de síntese de proteínas. Peptídeos hipofisários não identificados e vasopressina bloqueiam a indução de ciclina DI, antagonizando FGF-2. Por este mecanismo, vasopressina exerce um efeito anti-mitótico, bloqueando a transição G0→G1→S promovida por FGF-2. ACTH, que também exibe um forte efeito anti-mitótico sobre FGF-2 não afeta a indução de ciclina D1. A transfecção dupla de uma forma induzível de c-Myc (MycER) e constitutiva do cDNA de ciclina D1, em presença de ACTH mimetiza a ação mitogênica de FGF-2 em células Y-1 no estado G0. Estes resultados mostram que, em células adrenocorticais, c-Fos, c-Jun, c-Myc e ciclina D1 agem de forma independente e complementar, sendo necessários para a transição G0→G1→S do ciclo celular.The main control of mammalian cell cycle, which is divided in G0/G1/S/G2/M, occurs in G0→G1→S transition. In this work we show that cyclin D1 protein plays a key role in signal transduction circuits underlying the G0→G1→S transition of mouse Y-1 adrenocortical cell line. This conclusion is not surprising, once in the last years, many laboratories have contributed to establish the notion that the activity of the distinct forms of cyclin/CDK complexes is essential for the G0→G1→S transition, and also for other phases transition of cell cycle. In Y-1 cells, FGF-2 causes a delayed (5-6h) induction of cyclin D1 gene and protein, through a process dependent on protein synthesis. Hypophisary peptides, not identified, as well as vasopressin, block cyclin D1 induction, antagonizing FGF-2. By this mechanism, vasopressin exert an antimitotic effect, blocking G0→G1→S transition promoted by FGF-2. ACTH, which also exhibit a strong anti-mitotic effect upon FGF-2, does not affect cyclin D1 induction. Double transfection of inducible c-Myc (MycER) and constitutive cyclin D1 cDNA, in the presence of ACTH, mimics the mitogenic action of FGF-2 in G0 Y-1 cells. Altogether, these results show that, in adrenocortical cells, c-Fos, c-Jun, c-Myc and cyclin D1 act in an independent and complementary manner, being necessary for the G0→G1→S transition of cell cycle

    Role of cyclin D1 in the interaction between FGF-2, ACTH and other peptides in Y-1 adrenocortical cell signaling

    No full text
    O principal controle do ciclo celular de mamíferos, que é dividido em G0/G1/S/G2/M, ocorre na transição G0→G1→S. Nesta tese mostramos que a proteína ciclina D1 desempenha um papel fundamental nos circuitos de transdução de sinais que regulam a transição G0→G1→S na linhagem Y-1 de células adrenocorticais de camundongo. Esta conclusão não é surpreendente, uma vez que, ao longo dos últimos anos, muitos laboratórios contribuíram para estabelecer a noção de que a atividade das diversas formas do complexo ciclina/CDK é essencial para a transição G0→G1→S, e também para outras etapas do ciclo celular. Em células Y-1, FGF-2 induz tardiamente (5-6h) a expressão do gene e da proteína ciclina D 1, através de um processo dependente de síntese de proteínas. Peptídeos hipofisários não identificados e vasopressina bloqueiam a indução de ciclina DI, antagonizando FGF-2. Por este mecanismo, vasopressina exerce um efeito anti-mitótico, bloqueando a transição G0→G1→S promovida por FGF-2. ACTH, que também exibe um forte efeito anti-mitótico sobre FGF-2 não afeta a indução de ciclina D1. A transfecção dupla de uma forma induzível de c-Myc (MycER) e constitutiva do cDNA de ciclina D1, em presença de ACTH mimetiza a ação mitogênica de FGF-2 em células Y-1 no estado G0. Estes resultados mostram que, em células adrenocorticais, c-Fos, c-Jun, c-Myc e ciclina D1 agem de forma independente e complementar, sendo necessários para a transição G0→G1→S do ciclo celular.The main control of mammalian cell cycle, which is divided in G0/G1/S/G2/M, occurs in G0→G1→S transition. In this work we show that cyclin D1 protein plays a key role in signal transduction circuits underlying the G0→G1→S transition of mouse Y-1 adrenocortical cell line. This conclusion is not surprising, once in the last years, many laboratories have contributed to establish the notion that the activity of the distinct forms of cyclin/CDK complexes is essential for the G0→G1→S transition, and also for other phases transition of cell cycle. In Y-1 cells, FGF-2 causes a delayed (5-6h) induction of cyclin D1 gene and protein, through a process dependent on protein synthesis. Hypophisary peptides, not identified, as well as vasopressin, block cyclin D1 induction, antagonizing FGF-2. By this mechanism, vasopressin exert an antimitotic effect, blocking G0→G1→S transition promoted by FGF-2. ACTH, which also exhibit a strong anti-mitotic effect upon FGF-2, does not affect cyclin D1 induction. Double transfection of inducible c-Myc (MycER) and constitutive cyclin D1 cDNA, in the presence of ACTH, mimics the mitogenic action of FGF-2 in G0 Y-1 cells. Altogether, these results show that, in adrenocortical cells, c-Fos, c-Jun, c-Myc and cyclin D1 act in an independent and complementary manner, being necessary for the G0→G1→S transition of cell cycle

    Novel Perspectives of Neural Stem Cell Differentiation: From Neurotransmitters to Therapeutics

    No full text
    In the past years, many reports have described the existence of neural progenitor and stem cells in the adult central nervous system capable of generating new neurons, astrocytes, and oligodendrocytes. This discovery has overturned the central assumption in the neuroscience field, of no new neurons being originated in the brain after birth and provided the fundaments to understand the molecular basis of neural differentiation and to develop new therapies for neural tissue repair. Although the mechanisms underlying cell fate during neural development are not yet understood, the importance of intrinsic and extrinsic factors and of an appropriate microenvironment is well known. in this context, emerging evidence strongly suggests that glial cells play a key role in controlling multiple steps of neurogenesis. Those cells, of particular radial glia, are important for migration, cell specification, and integration of neurons into a functional neural network. This review aims to present an update in the neurogenesis area and highlight the modulation of neural stem cell differentiation by neurotransmitters, growth factors, and their receptors, with possible applications for cell therapy strategies of neurological disorders. (C) 2008 international Society for Advancement of CytometryUniv São Paulo, Inst Quim, Dept Bioquim, BR-01498 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Fisiol, Disciplina Neurofisiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol Neurocirurgia, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Fisiol, Disciplina Neurofisiol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol Neurocirurgia, São Paulo, BrazilWeb of Scienc

    Interactions between the NO-Citrulline Cycle and Brain-derived Neurotrophic Factor in Differentiation of Neural Stem Cells

    No full text
    The diffusible messenger NO plays multiple roles in neuroprotection, neurodegeneration, and brain plasticity. Argininosuccinate synthase (AS) is a ubiquitous enzyme in mammals and the key enzyme of the NO-citrulline cycle, because it provides the substrate L-arginine for subsequent NO synthesis by inducible, endothelial, and neuronal NO synthase (NOS). Here, we provide evidence for the participation of AS and of the NO-citrulline cycle in the progress of differentiation of neural stem cells (NSC) into neurons, astrocytes, and oligodendrocytes. AS expression and activity and neuronal NOS expression, as well as L-arginine and NOx production, increased along neural differentiation, whereas endothelial NOS expression was augmented in conditions of chronic NOS inhibition during differentiation, indicating that this NOS isoform is amenable to modulation by extracellular cues. AS and NOS inhibition caused a delay in the progress of neural differentiation, as suggested by the decreased percentage of terminally differentiated cells. On the other hand, BDNF reversed the delay of neural differentiation of NSC caused by inhibition of NOx production. Alikely cause is the lack of NO, which up-regulated p75 neurotrophin receptor expression, a receptor required for BDNF-induced differentiation of NSC. We conclude that the NO-citrulline cycle acts together with BDNF for maintaining the progress of neural differentiation.Brazilian Fundacao de Amparo a Pesquisa do Estado de Sao PauloBrazilian Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [06/61285-9]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of BrazilConselho Nacional de Desenvolvimento Cientifico e Tecnologico of BrazilFundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao PauloConselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e Tecnologic

    Regulation of neurogenesis and gliogenesis of retinoic acid-induced P19 embryonal carcinoma cells by P2X2 and P2X7 receptors studied by RNA interference

    No full text
    Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)CNPq (Conselho Nacional de Desenvolvimento Cientifico), BrazilCNPq (Conselho Nacional de Desenvolvimento Cientifico), BrazilCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), BrazilCAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, BrazilCNPqCNP

    Kinin-B2 Receptor Activity Determines the Differentiation Fate of Neural Stem Cells

    No full text
    Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.National Institutes of HealthNational Institutes of Health [1-DP2-OD006495-01]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2006/61285-9]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Provost's Office for Research of the University of Sao Paulo Programa de Incentivo a Pesquisa [2011.1.9333.1.3]Provosts Office for Research of the University of Sao Paulo Programa de Incentivo a PesquisaNAPNA-USP, BrazilNAPNAUSP, BrazilInternational Rett Syndrome Foundation [2517]International Rett Syndrome FoundationEmerald FoundationEmerald FoundationCalifornia Institute for Regenerative Medicine GrantCalifornia Institute for Regenerative Medicine Grant [TR2-01814]Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Conselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e Tecnologic

    Administration of Neural Precursor Cells Ameliorates Renal Ischemia-Reperfusion Injury

    No full text
    In this study we evaluated whether administration of stem cells of neural origin (neural precursor cells, NPCs) could be protective against renal ischemia-reperfusion injury (IRI). We hypothesized that stem cell outcomes are not tissue-specific and that NPCs can improve tissue damage through paracrine mechanisms, especially due to immunomodulation. To this end, Wistar rats (200-250 g) were submitted to 1-hour ischemia and treated with NPCs (4 x 10(6) cells/animal) at 4 h of reperfusion. To serve as controls, ischemic animals were treated with cerebellum homogenate harvested from adult rat brain. All groups were sacrificed at 24 h of reperfusion. NPCs were isolated from rat fetus telencephalon and cultured until neurosphere formation (7 days). Before administration, NPCs were labeled with carboxyfluorescein diacetate succinimydylester (CFSE). Kidneys were harvested for analysis of cytokine profile and macrophage infiltration. At 24 h, NPC treatment resulted in a significant reduction in serum creatinine (IRI + NPC 1.21 + 0.18 vs. IRI 3.33 + 0.14 and IRI + cerebellum 2.95 + 0.78mg/dl, p < 0.05) and acute tubular necrosis (IRI + NPC 46.0 + 2.4% vs. IRI 79.7 + 14.2%, p < 0.05). NPC-CFSE and glial fibrillary acidic protein (GFAP)-positive cells (astrocyte marker) were found exclusively in renal parenchyma, which also presented GFAP and SOX-2 (an embryonic neural stem cell marker) mRNA expression. NPC treatment resulted in lower renal proinflammatory IL1-beta and TNF-alpha expression and higher anti-inflammatory IL-4 and IL-10 transcription. NPC-treated animals also had less macrophage infiltration and decreased serum proinflammatory cytokines (IL-1 beta, TNF-alpha and INF-gamma). Our data suggested that NPC therapy improved renal function by influencing immunological responses. Copyright (C) 2009 S. Karger AG, BaselMCT/CT-Saude/Decit/SCTIE/MSFundacao de Apoio a Pesquisa do Estado de São PauloUniv São Paulo, Dept Immunol, Inst Biomed Sci, Lab Transplantat Immunobiol, BR-05508900 São Paulo, BrazilUniversidade Federal de São Paulo, Lab Imunol Clin & Expt, Div Nephrol, São Paulo, BrazilUniversidade Federal de São Paulo, Neurophysiol Lab, Div Physiol, São Paulo, BrazilUniv Estadual Campinas, Div Nephrol, Campinas, SP, BrazilUniv Fed Triangulo Mineiro, Div Pathol, Belo Horizonte, MG, BrazilInst Israelita Ensino & Pesquisa Albert Einstein, São Paulo, BrazilUniversidade Federal de São Paulo, Lab Imunol Clin & Expt, Div Nephrol, São Paulo, BrazilUniversidade Federal de São Paulo, Neurophysiol Lab, Div Physiol, São Paulo, BrazilMCT/CT-Saude/Decit/SCTIE/MS: 552307/2005-0Fundacao de Apoio a Pesquisa do Estado de São Paulo: 04/08311-6Fundacao de Apoio a Pesquisa do Estado de São Paulo: 04/13826-5Fundacao de Apoio a Pesquisa do Estado de São Paulo: 05/50085-6Fundacao de Apoio a Pesquisa do Estado de São Paulo: 07/07139-3Web of Scienc
    corecore