12 research outputs found

    Gottingen Minipig is not a Suitable Animal Model for in Vivo Testing of Tissue-Engineered Corneal Endothelial Cell-Carrier Sheets and for Endothelial Keratoplasty

    Get PDF
    Aim: To test the feasibility of implanting human anterior lens capsules (HALCs) with porcine corneal endothelial cells (pCEC) in vivo in Gottingen minipigs and at the same time test the suitability of Gottingen minipig as model for endothelial keratoplasty. Materials and Methods: Cell-carrier constructs of decellularized HALC with cultured (pCEC) were created for implementation in vivo. Eight Gottingen minipigs (6 months old) underwent surgery with descemetorhexis or removal of endothelium by scraping and implementation of HALC without (animal 1-4) and with (animal 5-8) pCEC. Follow-up examinations included optical coherence tomography (OCT) imaging (1,2 and 3 months) and slit-lamp examination (<1 week as well as 1,2 and 3 months). Results: Intraoperative challenges included difficulties in maintaining an anterior chamber due to soft tissue and vitreous pressure, development of corneal edema and difficulties removing Descemet's membrane because of strong adhesion to stroma. Therefore, descemetorhexis was replaced by mechanical scraping of the endothelium in animal 4-8. HALCs without pCEC were implanted in animal 1-4. Apposition to the back surface was not achieved in animal 1 and 3 because of corneal edema and poor visibility. Animal 5 was sacrificed because of a lens capsule tear. HALCs with pCEC were implanted in animal 6-8. Slit-lamp examination the first week revealed corneal edema in all animals, although mild in animals 4. One-month examination showed retrocorneal membranes with overlying corneal edema in all animals. Histology showed fibrosis in the AC and on the back surface of the cornea, compatible with the clinical diagnosis of retrocorneal membrane. Conclusions: In conclusion, the minipig is not suitable for corneal transplantation studies in vivo because of intraoperative challenges and development of retrocorneal membrane postoperatively. For in vivo testing of the surgical handling and the therapeutic potential of tissue-engineered endothelial cell-carrier constructs other animal models are required.Ophthalmic researc

    Supplementary Material for: Identification of Interstitial Cajal-Like Cells in the Human Thoracic Duct

    No full text
    Interstitial Cajal-like cells (ICLCs) are speculated to be pacemakers in smooth muscle tissues. While the human thoracic duct (TD) is spontaneously active, the origin of this activity is unknown. We hypothesized that ICLCs could be present in the TD and using histological techniques, immunohistochemistry and immunofluorescence we have investigated the presence of ICLCs, protein markers for ICLCs and the cellular morphology of the human TD. Transmission electron microscopy was employed to investigate ultrastructure. Methylene blue staining, calcium-dependent fluorophores and confocal microscopy were used to identify ICLCs in live tissue. Methylene blue stained cells with morphology suggestive of ICLCs in the TD. Immunoreactivity localized the ICLC protein markers c-kit, CD34 and vimentin to many cells and processes associated with smooth muscle cells (SMCs): coexpression of c-kit with vimentin or CD34 was observed in some cells. Electron microscopy analysis confirmed ICLCs as a major cell type of the human TD. Lymphatic ICLCs possess caveolae, dense bands, a patchy basal lamina, intermediate filaments and specific junctions to SMCs. ICLCs were ultrastructurally differentiable from other interstitial cells observed: fibroblasts, mast cells, macrophages and pericytes. Lymphatic ICLCs were localized to the subendothelial region of the wall as well as in intimate association with smooth muscle bundles throughout the media. ICLCs were morphologically distinct with multiple processes and also spindle shapes. Confocal imaging with calcium-dependent fluorophores corroborated cell morphology and localization observed in fixed tissues. Lymphatic ICLCs thus constitute a significant cell type of the human TD and physically interact with lymphatic SMCs

    The lymphatic system

    No full text
    Albeit often neglected, the lymphatic system serves multiple functions to the cardiovascular system, the most relevant being volume homeostasis. In this chapter we describe the anatomy and physiology of lymphatic vessels: while sharing many aspects with other components of the cardiovascular system, they also show highly specialised features, such as the intrinsic contractile activity to favour lymph drainage. We herein discuss how disturbance in lymphatic anatomy and/or function results in lymphedema and present some of the recently accumulating evidence linking cardiovascular disease to lymphatic impairment

    Identification of Interstitial Cajal-Like Cells in the Human Thoracic Duct

    No full text
    Interstitial Cajal-like cells (ICLCs) are speculated to be pacemakers in smooth muscle tissues. While the human thoracic duct (TD) is spontaneously active, the origin of this activity is unknown. We hypothesized that ICLCs could be present in the TD and using histological techniques, immunohistochemistry and immunofluorescence we have investigated the presence of ICLCs, protein markers for ICLCs and the cellular morphology of the human TD. Transmission electron microscopy was employed to investigate ultrastructure. Methylene blue staining, calcium-dependent fluorophores and confocal microscopy were used to identify ICLCs in live tissue. Methylene blue stained cells with morphology suggestive of ICLCs in the TD. Immunoreactivity localized the ICLC protein markers c-kit, CD34 and vimentin to many cells and processes associated with smooth muscle cells (SMCs): coexpression of c-kit with vimentin or CD34 was observed in some cells. Electron microscopy analysis confirmed ICLCs as a major cell type of the human TD. Lymphatic ICLCs possess caveolae, dense bands, a patchy basal lamina, intermediate filaments and specific junctions to SMCs. ICLCs were ultrastructurally differentiable from other interstitial cells observed: fibroblasts, mast cells, macrophages and pericytes. Lymphatic ICLCs were localized to the subendothelial region of the wall as well as in intimate association with smooth muscle bundles throughout the media. ICLCs were morphologically distinct with multiple processes and also spindle shapes. Confocal imaging with calcium-dependent fluorophores corroborated cell morphology and localization observed in fixed tissues. Lymphatic ICLCs thus constitute a significant cell type of the human TD and physically interact with lymphatic SMCs.</p
    corecore