226 research outputs found

    Toward an Understanding of the Perpetuation of the Agent of Tularemia

    Get PDF
    The epidemiology of tularemia has influenced, perhaps incorrectly skewed, our views on the ecology of the agent of tularemia. In particular, the central role of lagomorphs needs to be reexamined. Diverse observations, some incidental, and some that are more generally reproducible, have not been synthesized so that the critical elements of the perpetuation of Francisella tularensis can be identified. Developing a quantitative model of the basic reproduction number of F. tularensis may require separate treatments for Type A and Type B given the fundamental differences in their ecology

    Prevalence of Ehrlichia muris in Wisconsin Deer Ticks Collected During the Mid 1990s

    Get PDF
    Human ehrlichiosis is due to infection by tick transmitted bacteria of the genus Ehrlichia. Based on a hypothesis for the biogeography of deer tick transmitted infections, we undertook a focused search for the Eurasian E. muris in North American deer ticks. The search was stimulated by anecdotal reports of E. muris-like infection in human ehrlichiosis patients from Wisconsin. We analyzed archived adult deer ticks collected in northern Wisconsin during the 1990s by specific polymerase chain reaction for evidence of infection, and sequenced amplification products to identify E. muris. About 1% of 760 adult deer ticks collected from Spooner, Wisconsin in the 1990s contained E. muris DNA. We conclude that E. muris was present in North American deer ticks a decade ago and is likely to infect this human biting vector elsewhere in the U.S. Biogeographic theory and molecular phylogenetic methods can facilitate a targeted search for potential zoonoses

    Incrimination of shrews as a reservoir for Powassan virus

    Get PDF
    Powassan virus lineage 2 (deer tick virus) is an emergent threat to American public health, causing severe neurologic disease. Its life cycle in nature remains poorly understood. We use a host-specific retrotransposon-targeted real time PCR assay to test the hypothesis that white-footed mice, considered the main eastern U.S. reservoir of the coinfecting agent of Lyme disease, is the reservoir for deer tick virus. Of 20 virus-infected host-seeking nymphal black-legged ticks 65% fed on shrews and none on mice. The proportion of ticks feeding on shrews at a site is positively associated with prevalence of viral infection, but not the Lyme disease agent. Viral RNA is detected in the brain of one shrew. We conclude that shrews are a likely reservoir host for deer tick virus and that host bloodmeal analysis can provide direct evidence to incriminate reservoir hosts, thereby promoting our understanding of the ecology of tick-borne infections

    Hypersensitivity to Ticks and Lyme Disease Risk

    Get PDF
    Persons who report frequent tick-associated itch are less likely to contract Lyme disease than those who do not

    Entomologic and Serologic Evidence of Zoonotic Transmission of Babesia microti, Eastern Switzerland

    Get PDF
    We evaluated human risk for infection with Babesia microti at a site in eastern Switzerland where several B. microti–infected nymphal Ixodes ricinus ticks had been found. DNA from pooled nymphal ticks amplified by polymerase chain reaction was highly homologous to published B. microti sequences. More ticks carried babesial infection in the lower portion of the rectangular 0.7-ha grid than in the upper (11% vs. 0.8%). In addition, we measured seroprevalence of immunoglobulin (Ig) G antibodies against B. microti antigen in nearby residents. Serum from 1.5% of the 396 human residents of the region reacted to B. microti antigen (>1:64), as determined by indirect immunofluorescence assay (IgG). These observations constitute the first report demonstrating B. microti in a human-biting vector, associated with evidence of human exposure to this agent in a European site

    Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine

    Get PDF
    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is transmitted by Ixodes ticks. A vaccine based on B. burgdorferi outer surface protein (Osp) A protects mice from spirochete infection. Here we report on the expression of OspA on spirochetes inside engorging ticks and relate OspA expression to antispirochetal immunity. Spirochetes in the gut of unfed nymphal ticks were stained by an OspA antibody, whereas in feeding ticks, the majority of spirochetes in the gut and salivary glands did not stain with the antibody. Thus, OspA was not expressed on most spirochetes during transmission from the vector to the vertebrate host. To examine the mechanism of protection afforded by OspA antibody, mice were passively immunized with OspA antibody at different times relative to tick attachment. When OspA antibody was administered to mice before or at the time of tick attachment, spirochetal development events in the vector, such as growth and salivary gland invasion, were blocked and the mice were protected from B. burgdorferi infection. When OspA antibody was administered to mice 48 h after tick attachment, spirochetes persisted in the nymphs and the mice were not protected despite the presence of circulating antibodies in the host as well as in the tick blood meal. Thus, OspA immunity appears to be effective only during a narrow window time at the beginning of the blood meal when antibodies bind to OspA-expressing spirochetes in the tick gut and block transmission from the vector to the host

    An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands

    Get PDF
    Anaplasma phagocytophilum is the agent of human anaplasmosis, the second most common tick-borne illness in the United States. This pathogen, which is closely related to obligate intracellular organisms in the genera Rickettsia, Ehrlichia, and Anaplasma, persists in ticks and mammalian hosts; however, the mechanisms for survival in the arthropod are not known. We now show that A. phagocytophilum induces expression of the Ixodes scapularis salp16 gene in the arthropod salivary glands during vector engorgement. RNA interference–mediated silencing of salp16 gene expression interfered with the survival of A. phagocytophilum that entered ticks fed on A. phagocytophilum–infected mice. A. phagocytophilum migrated normally from A. phagocytophilum–infected mice to the gut of engorging salp16-deficient ticks, but up to 90% of the bacteria that entered the ticks were not able to successfully infect I. scapularis salivary glands. These data demonstrate the specific requirement of a pathogen for a tick salivary protein to persist within the arthropod and provide a paradigm for understanding how Rickettsia-like pathogens are maintained within vectors
    • …
    corecore