146 research outputs found

    Functional interactions between BKCa a-subunit and Annexin A5: implications in apoptosis

    Get PDF
    Proteomic studies have suggested a biochemical interaction between the α subunit of the large conductance, voltage- and Ca2+-activated potassium channel (BKCaα) and Annexin A5 (ANXA5), which we verify here by co-immunoprecipitation and double labelling immunocytochemistry. The observation that annexin is flipped to the outer membrane leaflet of the plasma membrane during apoptosis, together with the knowledge that the intracellular C-terminal of the BKCaα contains both a Ca2+-binding and a putative annexin-binding motif, prompted us to investigate the functional consequences of this protein partnership to cell death. Membrane biotinylation demonstrated that ANXA5 was flipped to the outer membrane leaflet of HEK 293 cells early in serum deprivation-evoked apoptosis. As expected, serum deprivation caused caspase 3/7 activation and this was accentuated in BKCaα expressing HEK 293 cells. The functional consequences of ANXA5 partnership with BKCaα were striking, with ANXA5 knockdown causing an increase, and ANXA5 over expression causing a decrease, in single BKCa channel Ca2+-sensitivity, measured in inside-out membrane patches by patch-clamp. Taken together, these data suggest a novel model of the early stages of apoptosis where membrane flippage results in removal of the inhibitory effect of ANXA5 on K+ channel activity with the consequent amplification of Ca2+ influx and augmented activation of caspases

    Computer Model of a Synchronized Asynchronous Motor

    Get PDF
    AbstractA computer model of a synchronized asynchronous motor has been designed and divided into blocks. The computer model consists of units calculating magnetizing currents, stator and rotor current, the main electromagnetic flux and EMF of windings, electromagnetic torque of the rotor, the angular velocity, and the angle of the motor shaft rotation. The paper presents the results of the synchronization process transients as well as the dependences of the motor torque on the synchronization phase

    Kv7/M-type potassium channels in rat skin keratinocytes.

    Get PDF
    Skin keratinocytes fulfil important signalling and protective functions. Immunocytochemical experiments revealed the unexpected presence of immunoreactivity for the M-type potassium channel subunit Kv7.2 in the keratinocyte layer of intact rat paw skin and in keratinocytes isolated from the skin of 1-day-old rats and cultured in vitro for 3-10 days. Application of the M-channel enhancer retigabine (3-10 μM) to isolated cultured rat keratinocytes: (a) increased outward membrane currents recorded under voltage clamp, (b) produced ~3 mV hyperpolarization at rest, (c) enhanced ~3-fold the release of ATP induced by the TRPV3 agonist carvacrol (1 mM) and (d) increased the amplitude of the carvacrol-induced intracellular Ca(2+) transient measured with Fura-2. The effect of retigabine on ATP release was prevented by the M-channel blocking agent XE991. We conclude that rat skin keratinocytes possess M-channels that, when activated, can modify their physiological properties, with potential significance for their sensory and other biological functions

    Mathematical and computer models of syncronized asynchronous motor

    Full text link
    Разработана математическая и компьютерная модели синхронизированного асинхронного двигателя, которая построена по блочному типу. Компьютерная модель состоит иблоков для расчета токов намагничивания, статора и ротора, расчета главного потока и ЭДС обмоток, расчета электромагнитного момента ротора, расчета угловой скорости и угла поворота вала двигателя. Дано математическое описание каждого блока.The mathematical and computer models of synchronized asynchronous motor which are built on the block type have been designed. The computer model consists of the units calculating magnetizing currents, stator and rotor current, the main electromagnetic flux and EMF of windings, electromagnetic torque of the rotor, the angular velocity and the angle of rotation of the motor shaft. The mathematical description of each block is submitted

    Diffusion and defect reactions between donors, C, and vacancies in Ge. II. Atomistic calculations of related complexes

    Get PDF
    Electronic structure calculations are used to study the stability, concentration, and migration of vacancy-donor (phosphorus, arsenic, and antimony) complexes in germanium, in the presence of carbon. The association of carbon with mobile vacancy-donor pairs can lead to energetically favorable and relatively immobile complexes. It is predicted that the complexes formed between lattice vacancies, carbon, and antimony substitutional atoms are more stable and less mobile compared to complexes composed of vacancies, carbon, and phosphorus or arsenic atoms. Then, with the use of mass action analysis, the relative concentrations of the most important complexes are calculated, which depend also on their relative stability not just their absolute stability. Overall, the theoretical predictions are consistent with experimental results, which determined that the diffusion of vacancy-donor defects is retarded in the presence of carbon, especially in samples with a high concentration of carbon. In addition, the calculations provide information on the structure and the equilibrium concentration of the most important complexes and details of their association energies

    Functional Interactions between BK Ca

    Get PDF
    Proteomic studies have suggested a biochemical interaction between α subunit of the large conductance, voltage- and Ca2+-activated potassium channel (BKCaα), and annexin A5 (ANXA5), which we verify here by coimmunoprecipitation and double labelling immunocytochemistry. The observation that annexin is flipped to the outer membrane leaflet of the plasma membrane during apoptosis, together with the knowledge that the intracellular C-terminal of BKCaα contains both Ca2+-binding and a putative annexin-binding motif, prompted us to investigate the functional consequences of this protein partnership to cell death. Membrane biotinylation demonstrated that ANXA5 was flipped to the outer membrane leaflet of HEK 293 cells early in serum deprivation-evoked apoptosis. As expected, serum deprivation caused caspase-3/7 activation and this was accentuated in BKCaα expressing HEK 293 cells. The functional consequences of ANXA5 partnership with BKCaα were striking, with ANXA5 knockdown causing an increase and ANXA5 overexpression causing a decrease, in single BKCa channel Ca2+-sensitivity, measured in inside-out membrane patches by patch-clamp. Taken together, these data suggest a novel model of the early stages of apoptosis where membrane flippage results in removal of the inhibitory effect of ANXA5 on K+ channel activity with the consequent amplification of Ca2+ influx and augmented activation of caspases

    Structural requirements of membrane phospholipids for M-type potassium channel activation and binding.

    Get PDF
    M-channels are voltage-gated potassium channels that regulate cell excitability. They are heterotetrameric assemblies of Kv7.2 and Kv7.3 subunits. Their opening requires the presence of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). However, the specificity of PI(4,5)P(2) as a binding and activating ligand is unknown. Here, we tested the ability of different phosphoinositides and lipid phosphates to activate or bind to M-channel proteins. Activation of functional channels was measured in membrane patches isolated from cells coexpressing Kv7.2 and Kv7.3 subunits. Channels were activated to similar extents (maximum open probability of ∼0.8 at 0 mV) by 0.1-300 μM dioctanoyl homologs of the three endogenous phosphoinositides, PI(4)P, PI(4,5)P(2), and PI(3,4,5)P(3), with sensitivity increasing with increasing numbers of phosphates. Non-acylated inositol phosphates had no effect up to 100 μM. Channels were also activated with increasing efficacy by 1-300 μM concentrations of the monoacyl monophosphates fingolimod phosphate, sphingosine 1-phosphate, and lysophosphatidic acid but not by phosphate-free fingolimod or sphingosine or by phosphate-masked phosphatidylcholine or phosphatidylglycerol. An overlay assay confirmed that a fusion protein containing the full-length C terminus of Kv7.2 could bind to a broad range of phosphoinositides and phospholipids. A mutated Kv7.2 C-terminal construct with reduced sensitivity to PI(4,5)P showed significantly less binding to most polyphosphoinositides. We concluded that M-channels bind to, and are activated by, a wide range of lipid phosphates, with a minimum requirement for an acyl chain and a phosphate headgroup. In this, they more closely resemble inwardly rectifying Kir6.2 potassium channels than the more PI(4,5)P(2)-specific Kir2 channels. Notwithstanding, the data also support the view that the main endogenous activator of M-channels is PI(4,5)P(2)

    The role of Kv1.2 channel in electrotaxis cell migration

    Get PDF
    Voltage-gated potassium Kv1.2 channels play pivotal role in maintaining of resting membrane potential and, consequently, regulation of cellular excitability of neurons. Endogenously generated electric field (EF) have been proven as an important regulator for cell migration and tissue repair. The mechanisms of ion channel involvement in EF-induced cell responses are extensively studied but largely are poorly understood. In this study we generated three COS-7 clones with different expression levels of Kv1.2 channel, and confirmed their functional variations with patch clamp analysis. Time-lapse imaging analysis showed that EF-induced cell migration response was Kv1.2 channel expression level depended. Inhibition of Kv1.2 channels with charybdotoxin (ChTX) constrained the sensitivity of COS-7 cells to EF stimulation more than their motility. Immunocytochemistry and pull-down analyses demonstrated association of Kv1.2 channels with actin-binding protein cortactin and its re-localization to the cathode-facing membrane at EF stimulation, which confirms the mechanism of EF-induced directional migration. This study displays that Kv1.2 channels represent an important physiological link in EF-induced cell migration. The described mechanism suggests a potential application of EF which may improve therapeutic performance in curing injuries of neuronal and/or cardiac tissue repair, post operational therapy, and various degenerative syndromes

    Improving and accelerating the differentiation and functional maturation of human stem cell-derived neurons: role of extracellular calcium and GABA

    Get PDF
    Neurons differentiated from pluripotent stem cells using established neural culture conditions often exhibit functional deficits. Recently, we have developed enhanced media which both synchronize the neurogenesis of pluripotent stem cell-derived neural progenitors and accelerate their functional maturation; together these media are termed SynaptoJuice. This pair of media are pro-synaptogenic and generate authentic, mature synaptic networks of connected forebrain neurons from a variety of induced pluripotent and embryonic stem cell lines. Such enhanced rate and extent of synchronized maturation of pluripotent stem cell-derived neural progenitor cells generates neurons which are characterized by a relatively hyperpolarized resting membrane potential, higher spontaneous and induced action potential activity, enhanced synaptic activity, more complete development of a mature inhibitory GABAA receptor phenotype and faster production of electrical network activity when compared to standard differentiation media. This entire process – from pre-patterned neural progenitor to active neuron – takes 3 weeks or less, making it an ideal platform for drug discovery and disease modelling in the fields of human neurodegenerative and neuropsychiatric disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease and Schizophrenia
    corecore