624 research outputs found

    Socially driven changes in neural and behavioural plasticity in zebrafish

    Get PDF
    Tese de doutoramento, Biologia (Etologia), Universidade de Lisboa, Faculdade de Ciências, 2015Social competence, the ability of individuals to regulate the expression of their social behaviour in order to optimize their social relationships in a group, is especially benefic for individuals living in complex social environments, and implies the ability to perceive social cues and produce appropriate behavioural output responses (Social Plasticity). Numerous examples of social competence can be found in nature, where individuals extract social information from the environment, and change their behavioural response based on the collected information. At the neuronal level, two major plasticity mechanisms have been proposed to underlie social plasticity, structural reorganization and biochemical switching of the neuronal networks underlying behaviour. The neural substrate for behavioural plasticity has been identified as the social decision-making (SDM) network, such that the same neural circuitry may underlie the expression of different behaviours depending on social context. The goal of this work is to study the proximate mechanism underlying behavioural flexibility in the context of experience-dependent behavioural shifts, in an integrative framework. For this purpose we exposed male zebrafish to two types of social interactions: (1) real-opponent interactions, from which a Winner and Loser emerged; and (2) Mirror-elicited interactions, that produced individuals that did not experience a change in social status, despite expressing similar levels of aggressive behaviour to those participating in real-opponent fights. In a first set of experiments, we studied the influence of neuromodulators on social plasticity mechanisms, by characterizing the endocrine response to social challenges, as well as the social modulation of brain monoamines and nonapeptides. Next we tested the SDM network hypothesis by contrasting changes in functional localization vs. connectivity across this network. Finally we characterized changes in expression of key genes for different neuroplasticity mechanisms in response to changes in social status. Our research suggests different social plasticity mechanisms underlying Winners and Losers both at physiological and molecular levels, for Mirror-fighters, where the experience of winning or losing was decoupled for the fighting experience, few changes were detected. This, by itself suggests a pivotal role of social perception in triggering shifts between socially driven behavioural states

    Adult neurogenesis in a new model specie, the cichlid fish Oreochromis mossambicus

    Get PDF
    Dissertação de Mestrado apresentada ao ISPA - Instituto UniversitárioEm comparação com outros vertebrados, os peixes teleósteos têm um enorme potencial para produzir células novas no cérebro de animais adultos. Em contraste com os mamíferos, onde o processo de neurogénese adulta encontra-se restrito a duas áreas cerebrais, a zona subventricular (SVZ) e a zona subgranular parte do giro dentado do hipocampo, em peixes teleósteos foram descritas mais de 10 regiões neurogénicas. Através da marcação de células mitóticas com 5-bromo-2’-deoxiuridina (BrdU), foram caracterizadas as zonas proliferativas da Tilapia de Moçambique (Oreochromis mossanbicus). Nesta espécies, foram encontradas zonas proliferativas em regiões específicas do bolbos olfactivo, telecéfalo, região pré-optica, hipotálamo, tálamo, tecto óptico, torus longitudinalis, nas três divisões do cerebelo, valvula cerebelli, corpus cerebelli, e lobus caudalis e na região da medula, abrangendo assim toda a extensão cerebral. A localização destas zonas proliferativas parece ser extremamente conservada ao longo da taxonomia e até o número total de células produzidas parece ser mantido com pouca variação. Com um tempo de sobrevivência de 2 horas, foram encontrados na tilapia um total de 80.000 células novas em comparação com as 100.000 descritas para o peixe eléctrico Apteronotus leptorhynchus. Os nossos resultados sugerem que a actividade mitótica em regiões discretas do cérebro adulto são uma característica primitiva que tem sido conservada ao longo da evolução.ABSTRACT: Compared to other vertebrate species, fish exhibit an enormous potential to produce new cells in the adult brain. In contrast to mammals, where proliferation zones are restricted to two brain areas, the sub ventricular zone (SVZ), and the subgranular zone (SGZ), part of the dentate gyrus of hippocampus, in teleost species more than 10 neurogenic regions have been described. By labeling mitotically dividing cells with 5-bromo-2'-deoxyuridine (BrdU), we have characterized the proliferation zones in the Mozambique tilapia (Oreochromis mossambicus). Proliferation zones were located in specific brain regions of the olfactory bulb, telencephalon, preoptic area, hypothalamus, thalamus, optic tectum, torus longitudinalis, in all three subdivisions of the cerebellum, the valvula cerebelli, the corpus cerebelli, and the lobus caudalis cerebelli and in the region of the medulla oblongata. These proliferation zones appeared to be extremely conserved across taxonomy and even the total number of new generated cells seems to be preserved. After 2 hours survival time we found a total of approximately 80.000 new cells for tilapia compared to 100.000 new cells described for Apteronotus leptorhynchus. Our results suggest that the presence of mitotic activity in specific brain regions is a primitive feature that has been conserved through evolution

    The Subgingival Periodontal Microbiota in the Aging Mouth

    Get PDF
    Different mechanisms have been hypothesized to explain the increase in prevalence and severity of periodontitis in older adults, including shifts in the periodontal microbiota. However, the actual impact of aging in the composition of subgingival biofilms remains unclear. In the present article, we provide an overview of the composition of the subgingival biofilm in older adults and the potential effects of age on the oral microbiome. In particular, this review covers the following topics: (i) the oral microbiota of an aging mouth, (ii) the effects of age and time on the human oral microbiome, (iii) the potential impact of inflammaging and immunosenescence in the host-oral microbiota interactions, and (iv) the relationship of the aging oral microbiota and Alzheimer’s disease. Finally, in order to explore in greater breadth the potential effects of aging on the periodontal microbiota, we present analyses of data compiled from large clinical studies that evaluated the subgingival microbiota of periodontally healthy subjects and periodontitis patients from a wide age spectrum (20–83 years old). Those studies were conducted at Guarulhos University (São Paulo, SP, Brazil) and at The Forsyth Institute (Cambridge, USA), from 1999 to 2014

    The subgingival periodontal microbiota of the aging mouth

    Get PDF
    Different mechanisms have been hypothesized to explain the increase in prevalence and severity of periodontitis in older adults, including shifts in the periodontal microbiota. However, the actual impact of aging in the composition of subgingival biofilms remains unclear. In the present article, we provide an overview of the composition of the subgingival biofilm in older adults and the potential effects of age on the oral microbiome. In particular, this review covers the following topics: (i) the oral microbiota of an aging mouth, (ii) the effects of age and time on the human oral microbiome, (iii) the potential impact of inflammaging and immunosenescence in the host-oral microbiota interactions, and (iv) the relationship of the aging oral microbiota and Alzheimer’s disease. Finally, in order to explore in greater breadth the potential effects of aging on the periodontal microbiota, we present analyses of data compiled from large clinical studies that evaluated the subgingival microbiota of periodontally healthy subjects and periodontitis patients from a wide age spectrum (20–83 years old). Those studies were conducted at Guarulhos University (São Paulo, SP, Brazil) and at The Forsyth Institute (Cambridge, USA), from 1999 to 2014

    Social Plasticity Relies on Different Neuroplasticity Mechanisms across the Brain Social Decision-Making Network in Zebrafish

    Get PDF
    Social living animals need to adjust the expression of their behavior to their status within the group and to changes in social context and this ability (social plasticity) has an impact on their Darwinian fitness. At the proximate level social plasticity must rely on neuroplasticity in the brain social decision-making network (SDMN) that underlies the expression of social behavior, such that the same neural circuit may underlie the expression of different behaviors depending on social context. Here we tested this hypothesis in zebrafish by characterizing the gene expression response in the SDMN to changes in social status of a set of genes involved in different types of neural plasticity: bdnf, involved in changes in synaptic strength; npas4, involved in contextual learning and dependent establishment of GABAergic synapses; neuroligins (nlgn1 and nlgn2) as synaptogenesis markers; and genes involved in adult neurogenesis (wnt3 and neurod). Four social phenotypes were experimentally induced: Winners and Losers of a real-opponent interaction; Mirror-fighters, that fight their own image in a mirror and thus do not experience a change in social status despite the expression of aggressive behavior; and non-interacting fish, which were used as a reference group. Our results show that each social phenotype (i.e., Winners, Losers, and Mirror-fighters) present specific patterns of gene expression across the SDMN, and that different neuroplasticity genes are differentially expressed in different nodes of the network (e.g., BDNF in the dorsolateral telencephalon, which is a putative teleost homolog of the mammalian hippocampus). Winners expressed unique patterns of gene co-expression across the SDMN, whereas in Losers and Mirror-fighters the co-expression patterns were similar in the dorsal regions of the telencephalon and in the supracommissural nucleus of the ventral telencephalic area, but differents in the remaining regions of the ventral telencephalon. These results indicate that social plasticity relies on multiple neuroplasticity mechanisms across the SDMN, and that there is not a single neuromolecular module underlying this type of behavioral flexibility.FCT fellowships: (SFRH/BD/44848/2008, SFRH/BD/89072/2012)

    Autism-associated gene shank3 is necessary for social contagion in zebrafish

    Get PDF
    BACKGROUND: Animal models enable targeting autism-associated genes, such as the shank3 gene, to assess their impact on behavioural phenotypes. However, this is often limited to simple behaviours relevant for social interaction. Social contagion is a complex phenotype forming the basis of human empathic behaviour and involves attention to the behaviour of others for recognizing and sharing their emotional or affective state. Thus, it is a form of social communication, which constitutes the most common developmental impairment across autism spectrum disorders (ASD). METHODS: Here we describe the development of a zebrafish model that identifies the neurocognitive mechanisms by which shank3 mutation drives deficits in social contagion. We used a CRISPR-Cas9 technique to generate mutations to the shank3a gene, a zebrafish paralogue found to present greater orthology and functional conservation relative to the human gene. Mutants were first compared to wild types during a two-phase protocol that involves the observation of two conflicting states, distress and neutral, and the later recall and discrimination of others when no longer presenting such differences. Then, the whole-brain expression of different neuroplasticity markers was compared between genotypes and their contribution to cluster-specific phenotypic variation was assessed. RESULTS: The shank3 mutation markedly reduced social contagion via deficits in attention contributing to difficulties in recognising affective states. Also, the mutation changed the expression of neuronal plasticity genes. However, only downregulated neuroligins clustered with shank3a expression under a combined synaptogenesis component that contributed specifically to variation in attention. LIMITATIONS: While zebrafish are extremely useful in identifying the role of shank3 mutations to composite social behaviour, they are unlikely to represent the full complexity of socio-cognitive and communication deficits presented by human ASD pathology. Moreover, zebrafish cannot represent the scaling up of these deficits to higher-order empathic and prosocial phenotypes seen in humans. CONCLUSIONS: We demonstrate a causal link between the zebrafish orthologue of an ASD-associated gene and the attentional control of affect recognition and consequent social contagion. This models autistic affect-communication pathology in zebrafish and reveals a genetic attention-deficit mechanism, addressing the ongoing debate for such mechanisms accounting for emotion recognition difficulties in autistic individuals

    Social zebrafish: Danio rerio as an emerging model in social neuroendocrinology

    Get PDF
    The fitness benefits of social life depend on the ability of animals to affiliate with others and form groups, on dominance hierarchies within groups that determine resource distribution, and on cognitive capacities for recognition, learning and information transfer. The evolution of these phenotypes is coupled with that of neuroendocrine mechanisms, but the causal link between the two remains underexplored. Growing evidence from our research group and others demonstrates that the tools available in zebrafish, Danio rerio, can markedly facilitate progress in this field. Here, we review this evidence and provide a synthesis of the state-of-the-art in this model system. We discuss the involvement of generalized motivation and cognitive components, neuroplasticity and functional connectivity across social decision-making brain areas, and how these are modulated chiefly by the oxytocin-vasopressin neuroendocrine system, but also by reward-pathway monoamine signaling and the effects of sex-hormones and stress physiology.Fundação para a Ciência e Tecnologia - FCTinfo:eu-repo/semantics/publishedVersio

    Brain morphology predicts social intelligence in wild cleaner fish

    Get PDF
    It is generally agreed that variation in social and/or environmental complexity yields variation in selective pressures on brain anatomy, where more complex brains should yield increased intelligence. While these insights are based on many evolutionary studies, it remains unclear how ecology impacts brain plasticity and subsequently cognitive performance within a species. Here, we show that in wild cleaner fish (Labroides dimidiatus), forebrain size of high-performing individuals tested in an ephemeral reward task covaried positively with cleaner density, while cerebellum size covaried negatively with cleaner density. This unexpected relationship may be explained if we consider that performance in this task reflects the decision rules that individuals use in nature rather than learning abilities: cleaners with relatively larger forebrains used decision-rules that appeared to be locally optimal. Thus, social competence seems to be a suitable proxy of intelligence to understand individual differences under natural conditions.info:eu-repo/semantics/publishedVersio

    A Three-Dimensional Stereotaxic MRI Brain Atlas of the Cichlid Fish Oreochromis mossambicus

    Get PDF
    The African cichlid Oreochromis mossambicus (Mozambique tilapia) has been used as a model system in a wide range of behavioural and neurobiological studies. The increasing number of genetic tools available for this species, together with the emerging interest in its use for neurobiological studies, increased the need for an accurate hodological mapping of the tilapia brain to supplement the available histological data. The goal of our study was to elaborate a three-dimensional, high-resolution digital atlas using magnetic resonance imaging, supported by Nissl staining. Resulting images were viewed and analysed in all orientations (transverse, sagittal, and horizontal) and manually labelled to reveal structures in the olfactory bulb, telencephalon, diencephalon, optic tectum, and cerebellum. This high resolution tilapia brain atlas is expected to become a very useful tool for neuroscientists using this fish model and will certainly expand their use in future studies regarding the central nervous system.Fundação para a Ciência e a Tecnologia grant: (PTDC/PSI/71811/2006); FCT PhD fellowships: (SFRH/BD/40976/2007, SFRH/BD/44848/2008); Plurianual Programme R&D: (unit MAR-LVT-Lisboa-331)

    Brain and gonadal aromatase activity and steroid hormone levels in female and polymorphic males of the peacock blenny Salaria pavo

    Get PDF
    In the peacock blenny Salaria pavo large males with well-developed secondary sexual characters establish nests and attract females while small “sneaker” males mimic female sexual displays in order to approach the nests of larger males and parasitically fertilize eggs. These alternative reproductive tactics are sequential, as sneakers irreversibly switch into nesting males. This transition involves major morphologic and behavioral changes and is likely to be mediated by hormones. This study focuses on the role of aromatase, an enzyme that catalyses the conversion of androgens into estrogens, in the regulation of male sexual polymorphism in S. pavo. For this, sex steroid plasma levels and aromatase activity (AA) in gonads, whole brain and brain macroareas were determined in sneakers, transitional males (i.e. sneakers undergoing the transition into nesting males), nesting males and females collected in the field. AAwas much higher in ovarian tissue than in testicular tissue and accordingly circulating estradiol levels were highest in females. This supports the view that elevated AA and estradiol levels are associated with the development of a functional ovary. Transitional males are in a non-reproductive phase and had underdeveloped testes when compared with sneakers and nesting males. Testicular AA was approximately 10 times higher in transitional males when compared with sneakers and nesting males, suggesting high AA has a suppressive effect on testicular development. Nesting males had significantly higher plasma levels of both testosterone (T) and 11-ketotestosterone when compared with the other male morphs and previous studies demonstrated that these androgens suppress female-like displays in sneakers. In the brain, AA was highest in macroareas presumably containing hypothalamic nuclei traditionally associated with the regulation of reproductive behaviors. Overall, females presented the highest levels of brain AA. In male morphs AA increased from sneakers, to transitional males, to nesting males in all brain macroareas. These results suggest that the transition into the nesting male tactic is accompanied both by an increase in testicular androgen production and by a higher conversion of androgens into estrogens in the brain. The increase in androgen production is likely to mediate the development of male secondary sexual characters while the increase in brain AA may be related to the behavioral changes associated with tactic transition
    corecore