15 research outputs found

    Ultra-high vacuum fabrication of nanoscale systems for studying single-electron charging by room-temperature atomic force microscopy

    No full text
    In this work we describe ultra-high vacuum fabrication of a nanoscale system that reveals Coulomb blockade at room temperature and its characterization by single-electron sensitive electrostatic force microscopy (e-EFM). The system consists of Au nanoparticles separated from an Fe(001) back electrode by a crystalline ultra-thin NaCl film. Due to the small size of the nanoparticles (3.5 nm high), the Coulomb blockade can be observed at room temperature. An atomic force microscopy (AFM) cantilever is used as a movable gate to charge individual nanoparticles via single-electron tunneling from the back electrode. At the same time the tunneling is detected by measuring frequency shift and damping of the oscillating cantilever. The e-EFM technique can overcome limitations of other characterization methods based on lithographic fabrication. So far, however, it has been successfully used only at low-temperatures. In this work, we extend the e-EFM technique to room temperature by carefully tuning the sample design and fabrication relative to the cantilever response to achieve maximum sensitivity. To grow atomically defined tunnel barriers we investigate the morphology of MgO and NaCl ultra-thin films on Fe(001) surfaces by non-contact-AFM and low energy electron diffraction (LEED). First, we demonstrate that the quality of MgO films, typically grown in ultra-high vacuum (UHV) by electron-beam evaporation, can be improved by using reactive deposition method that gives full control over the gaseous species existing in the evaporated beam. Second, we investigate the effects of temperature and oxygen presence on the growth of NaCl on Fe(001). As a result, we develop a protocol to grow NaCl films on the Fe(001)-p(1x1)O surface in a layer-by-layer mode, yielding atomically flat films with 40-60 nm wide terraces (on a 12 ML thick film) and with far fewer defects than the MgO films. Using the NaCl film as a tunnel barrier that can be easily adjusted by modifying the film thickness we characterize single-electron charging at room temperature of individual Au nanoparticles formed after thermal evaporation onto a 6 monolayer thick NaCl film. We demonstrate how a combination of e-EFM and finite element electrostatic simulation can be used for revealing electronic and morphological properties of individual Au nanoparticles. As a result, the electron addition energy, the capacitance, tunneling rates and an approximated shape of an individual nanoparticle have been determined. Numerical simulations point towards a total capacitance dominated by the mutual capacitance between the nanoparticle and the back electrode. A comparison with the experimental value, determined from measurement of the addition energy, indicates that the nanoparticles should be modeled as truncated spheres in order to reduce the mutual capacitance to the substrate. This observation has a fundamental impact on the design of nanoelectronic circuits, where the components have to meet desired requirements for capacitances that determine coupling and charging effects. The fabrication flexibility and the fact that all measurements were performed in-situ on samples prepared under ultra-clean conditions make the presented system attractive for further studies. In particular, this approach can be used to study quantum mechanically coupled quantum dots and the catalytic activity of Au nanoclusters at room temperature.Dans ce travail, nous décrivons la fabrication sous ultra haut vide (UHV) d'un système à l'échelle nanométrique qui révèle le blocage de Coulomb à température de la pièce, ainsi que sa caractérisation par microscopie à force électrostatique sensible à un électron (single-electron sensitive electrostatic force microscopy, e-EFM). Le système est constitué de nanoparticules d'or séparées d'une électrode de Fe(001) par un film cristallin ultra mince de NaCl. Dû à la petite taille des nanoparticules (3.5 nm maximum), le blocage de Coulomb est observable à température ambiante. Un cantilever de microscope à force atomique (MFA) est utilisé comme une grille électrique déplaçable pour charger individuellement les nanoparticules par le passage de charge élémentaire par effet tunnel à partir de l'électrode. Ce passage d'électron est détecté en mesurant simultanément le changement de fréquence de résonance, ainsi que l'amortissement de l'oscillation du cantilever. La technique e-EFM permet de contourner certaines limitations inhérentes aux techniques de caractérisation basées sur la fabrication par lithographie. Toutefois, cette technique a été appliquée avec succès seulement à basses températures. Dans ce travail, nous étendons la technique e-EFM à température ambiante par un ajustement minutieux du design de l'échantillon et de sa fabrication en fonction de la réponse du cantilever de sorte à maximiser la sensibilité de la mesure. Pour croître une jonction tunnel définie à l'échelle atomique, nous étudions la morphologie de couches minces de MgO et de NaCl sur une surface de Fe(001) par microscopie à force atomique non-contact et par diffraction d'électrons lents (Low Energy Electrons Diffraction, LEED). Premièrement, nous démontrons que la qualité des couches minces de MgO, typiquement crûes sous UHV par évaporation sous faisceau d'électrons (electron-beam evaporation), peut être améliorée par l'utilisation d'une méthode de déposition réactive qui donne un contrôle total sur les espèces gazeuses présentes dans le faisceau d'évaporation. Deuxièmement, nous étudions l'effet de la température et de la présence d'oxygène sur la croissance du NaCl sur une surface de Fe(001). Conséquemment, un protocole pour la croissance de films de NaCl sur une surface de Fe(001)-p(1x1)O déposés couche par couche. Ces films plats à l'échelle atomique présentent des terrasses de 40-60 nm de large et contiennent beaucoup moins de défauts cristallins que les films de MgO.En utilisant ces couches minces de NaCl comme jonction tunnel facilement ajustables par une modification de leur épaisseur, nous caractérisons le chargement d'électron à température ambiante de nanoparticules individuelles formées par évaporation thermique sur un film de 6 monocouches de NaCl. Nous montrons comment la combinaison de la technique e-EFM et de simulations électrostatiques par éléments finis peut être utilisée pour révéler les propriétés électroniques et morphologiques de nanoparticules d'or individuelles. Ainsi, l'énergie de chargement, la capacitance, la fréquence de passage par effet tunnel et la forme approximative des nanoparticules ont été déterminées. Des simulations numériques montrent que la capacitance totale est dominée par la capacitance mutuelle entre la nanoparticule et l'électrode. En comparant avec les valeurs expérimentales, déterminées par une mesure de l'énergie de chargement, on montre que les nanoparticules devraient être modélisées par des sphères tronquées pour réduire la capacitance mutuelle avec le substrat. Cette observation a un impact fondamental pour le design de circuits nanoélectroniques dans lesquels les composantes doivent avoir des capacitances définies, étant donné que celles-ci déterminent les effets de couplage et de chargement.La flexibilité de la technique de fabrication et le fait que toutes les mesures ont été effectuées in situ sur des échantillons dans des conditions ultra propres rendent le système attrayant pour de futures études

    Self-assembly of terephthalic acid on rutile TiO2(110): toward chemically functionalized metal oxide surfaces

    No full text
    Self-organization of 1,4-benzenedicarboxylic acid molecules (terephthalic acid, TPA) on a rutile TiO2(110)-(1×1) surface is studied by means of ultra-high vacuum scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). When saturation coverage is achieved with the formation of one monolayer, STM images reveal two alternating contrast patterns: (i) a well-organized (2×1) structure and (ii) a mixed structure of molecular rows oriented along the 001 crystallographic direction. Complementary STM images recorded with two different tip terminations prove that the two contrasting patterns indicate the same stable surface structure. The nc-AFM imaging confirms the mixed molecular row structure. It is concluded that TPA molecules are adsorbed in an upright position. This occurs with one of the carboxyl group bound dissociatively in a bi-dentate fashion with the two 5-fold coordinated Ti atoms. The second carboxyl group is exposed to the vacuum interface. This carboxyl terminated surface is discussed in terms of surface chemical functionalization

    Adsorption of large organic molecules on clean and hydroxylated rutile TiO2(110) surfaces

    No full text
    Behavior of large organic molecules equipped with spacer groups (Violet Landers, VL) on the TiO(2)(110)-(1x1) surfaces is investigated by means of high-resolution scanning tunneling microscopy (STM). Two distinct adsorption geometries are observed. We demonstrate that the molecule adsorption morphology can be alternated by well-controlled STM tip-induced manipulation. It is used to probe the mobility of molecules and reveals locking in one of the analyzed adsorption sites, thus allow to enhance or reduce the mobility along the [001] direction. Field induced hydrogen desorption is used to perform lateral STM manipulation on a hydroxyl-free surface, which provides insight into the influence of surface hydroxyl groups on the molecule behavior. The ability to image with submolecular resolution both the central board and the spacer groups of the VL molecule is demonstrated

    Adsorption of organic molecules on the TiO2(011) surface: STM study

    No full text
    High resolution scanning tunneling microscopy has been applied to investigate adsorption and self-assembly of large organic molecules on the TiO(2)(011) surface. The (011) face of the rutile titania has been rarely examined in this context. With respect to possible industrial applications of rutile, quite often in a powder form, knowledge on behavior of organic molecules on that face is required. In the presented study we fill in the gap and report on experiments focused on the self-assembly of organic nanostructures on the TiO(2)(011) surface. We use three different kinds of organic molecules of potential interest in various applications, namely, PTCDA and CuPc representing flat, planar stacking species, and Violet Landers specially designed for new applications in molecular electronics. In order to reach a complete picture of molecular behavior, extended studies with different surface coverage ranging from single molecule up to 2 monolayer (ML) thick films are performed. Our results show that the adsorption behavior is significantly different from previously observed for widely used metallic templates. Creation of highly ordered molecular lines, quasi-ordered wetting layers, controlled geometrical reorientation upon thermal treatment, existence of specific adsorption geometries, and prospects for tip-induced molecule ordering and manipulation provide better understanding and add new phenomena to the knowledge on the (011) face of rutile titania

    High-resolution STM studies of terephthalic acid molecules on rutile TiO2(110)-(1 × 1) surfaces

    No full text
    The structure of terephthalic acid (TPA) molecules adsorbed on rutile TiO2(110)-(1 × 1) has been investigated by scanning tunneling microscopy (STM). Molecularly resolved STM images show formation of monolayer with the tendency of TPA molecules to form dimer rows along the [001] substrate direction. The ability to image functional groups by the STM tip, and single molecule diffusion are demonstrated. The quality and stability of the monolayer are tested, including the resistance against air exposure. On the basis of results obtained, the model of TPA adsorption on the rutile TiO2(110)-(1 × 1) is proposed

    Supramolecular ordering of PTCDA molecules : the key role of dispersion forces in an unusual transition from physisorbed into chemisorbed state

    No full text
    Adsorption and self-assembly of large pi-conjugated 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecules on rutile TiO2(110) surface have been investigated using a combination of high-resolution scanning tunneling microscopy (STM), low-energy electron diffraction, and density functional theory calculations with inclusion of Grimme treatment of the dispersion forces (DFT-D). Evolution of the STM images as a function of PTCDA coverage Is owed by transition of the adsorption mode from physisorbed single adspecies and meandering stripes into spontaneously ordered chemisorbed molecular assemblies. This change in the adsorption fashion is accompanied by significant bending of the intrinsically flat, yet elastic, PTCDA molecule, which allows for strong electronic coupling of the dye adspecies with the TiO2 substrate. Extensive DFT-D modeling has revealed that adsorption is controlled by interfacial and intermolecular dispersion forces playing a dominant role in the adsorption of single PTCDA species, their self-organization into the meandering stripes, and at the monolayer coverage acting collectively to surmount the chemisorption energy barrier associated with the molecule bending. Analysis of the resulting density of states has revealed that alignment of the energy levels and strong electronic coupling at the PTCDA/TiO2 interface are beneficial for dye sensitization purpose

    Room-Temperature Single-Electron Charging Detected by Electrostatic Force Microscopy

    No full text
    We use atomic force microscopy to measure electron addition spectra of individual Au nanoparticles that exhibit Coulomb blockade at room temperature. The cantilever tip charges individual nanoparticles supported on an ultra-thin NaCl film <i>via</i> single-electron tunneling from the metal back electrode. The tunneling is detected by measuring frequency shift and damping of the oscillating cantilever. Finite element electrostatic calculations indicate that the total nanoparticle capacitance is dominated by mutual capacitance to the back electrode

    Chemical functionalization of the TiO2TiO_2(110)-(1 x 1) surface by deposition of terephthalic acid molecules : a density functional theory and scanning tunneling microscopy study

    No full text
    Periodic DFT calculations were used to explore structural properties of terephthalic acid (TPA) deposited on the rutile TiO2(110)-(1 x 1) surface at low and high coverage. Theoretical results were compared with scanning tunneling microscopy imaging data. At low loading the TPA molecules adsorb dissociatively as discrete entities adopting a flat-lying plane-on geometry. The resultant terephthalic anion is attached to the surface by two covalent bonds between the carboxylic oxygens and the 5-fold coordinated Ti atoms with an additional stabilization due to the hydrogen bond formation with the adjacent surface hydroxyls. When the saturation coverage is achieved, a well-ordered monolayer of the vertically oriented molecules is formed. In both cases the TPA admolecules bind to the surface via carboxylic groups as terephthalic anions. Formation of dimers results from the formation of hydrogen bonds between the adjacent TPA molecules. To elucidate the reactivity of the functionalized surface, we deposited zinc formate ions on top of the compact TPA monolayer. Calculations showed that the anchoring properties of the TiO2/TPA system are not perturbed by the dimer formation, auguring well for its prospective application as a promising chemically functionalized surface for on-top growth of metal organic frameworks
    corecore