36 research outputs found
Contributions to the determination of thermal behaviour of façades using quantitative internal IRT (Infrared Thermography)
Within the European framework, most of residential buildings do not satisfy the minimum thermal specifications. In fact, the renovation rate across the EU is estimated at 1% per year. To fulfil with the goals stated by European Directives 2010/31/EU and 2012/27/EU, it is necessary to ensure a minimum energy performance gap. From a thorough literature review, it was detected that the thermal behavior of a building is often underestimated or neglected during its construction and operation stages. For this reason, an accurate non-destructive testing (NDT) should be required, improving the shortcomings given by the current modelling tools and diagnostic techniques. The purpose of this thesis was to develop a method for determining in-situ the thermal behavior of façades under steady-state conditions using quantitative internal infrared thermography (IRT). After drawing up a numerical model to estimate the thermal transmittance (U-value) as a key parameter of the built quality, the dissertation continued with a validation process that was executed in two typical Spanish walls from different construction periods. This allowed: (i) refining the proposed method; (ii) exploring the boundaries conditions; (iii) assessing the influence of tabulated values set by international standards for wall emissivity and convective heat transfer coefficients among other aspects. The results revealed lower deviations related to the theoretical U-values (1.24 to 3.97%) for test durations of 2-3 hours. Furthermore, the results demonstrated that the use of tabulated values might entail high deviations (40%) in heavy multi-leaf walls with low U-values. Broadly, construction project documents for existing buildings, especially the oldest ones, are not available. Hence, this method may provide information about the building envelope for future refurbishment. In the case of new buildings, the method might allow the thermal behaviour of building façades to be checked according to the design parameters. Despite this, a subsequent literature review highlighted that a gap in the standardization of this method for in-situ building diagnostics is still to fill. Considering this aspect, three studies were developed in order to enhance the applicability of the quantitative internal IRT within the construction industry field. Firstly, the most influential operating conditions were analyzed through an experimental room with a heavy single-leaf wall tested under a wide temperature difference range (3.8 < DT < 21ºC). Secondly, this dissertation performed tests in a public housing stock comprised of four unoccupied buildings (without electric and heating systems in operation), to assess the influence of non-transient thermophysical properties of the wall (i.e. heat capacity per unit of area) on the accuracy of the method. Thirdly, a data-processing method based on U-value time series analysis was proposed and validated through six building façades with heavy multi-leaf walls. The aim was to find a common criterion for stopping the test when it is not necessary more data to obtain a reliable result. Having investigated the aspects mentioned above, it can be extrapolated that: (i) the optimum temperature difference range is found to be between 7 and 16ºC; (ii) the variance in the thermal transmittance could mainly be predicted by changes in the outer air temperature; (iii) the quantitative internal IRT is more accurate in heavy multi-leaf walls with high heat capacities per unit of area, reaching maximum deviations of 0.20%; (iv) the test might be executed in only 30 minutes; (v) the method could allow the assessment of aspects related to the determination of U-value of unoccupied buildings for DT under 10ºC, especially in Spain or European countries with a Mediterranean climate where these test conditions might represent a limitation. Hence, the decision-making could be streamlined in real built environments, increasing the European renovation rate in the mid-term.Dins el Marc Europeu, la majoria dels edificis residencials no satisfan les especificacions tèrmiques mínimes. De fet, la taxa de renovació a Europa és estimada en 1% anual. Per complir amb els objectius de les Directives Europees 2010/31/UE i 2012/27/UE, és necessari assegurar una bretxa energètica mínima. A partir d'un estat de l'art exhaustiu, es va detectar que el comportament tèrmic d'un edifici sovint és subestimat o negligit durant les etapes de construcció i operació. Per aquest motiu, una prova no destructiva i precisa hauria de ser requerida, per tal de millorar les deficiències donades per les actuals eines de modelització i diagnosi d'edificis. El propòsit de la tesi era desenvolupar un mètode per determinar in-situ el comportament tèrmic de les façanes sota condicions estacionàries mitjançant la termografia quantitativa interna (IRT). Després d'elaborar un model numèric per estimar la transmitància tèrmica (U-value) com a paràmetre clau de la qualitat construïda, la dissertació va continuar amb un procés de validació executat en dues parets típiques espanyoles de diferents períodes de construcció. Això va permetre: (i) refinar el mètode proposat; (ii) explorar les condicions de contorn; (iii) avaluar la influència dels valors tabulats establerts per les normatives internacionals per l'emissivitat de la paret i els coeficients de transferència de calor per convecció. Els resultats van revelar baixes desviacions respecte als valors teòrics de transmitància tèrmica (1.24 a 3.97%) per duracions de test entre 2 i 3 hores. A més a més, els resultats van demostrar que l’ús de valors tabulats podria implicar altes desviacions (40%) en parets compostes. En general, els projectes de construcció d'edificis existents antics no estan disponibles. Per tant, aquest mètode podria proporcionar informació sobre la façana per futures rehabilitacions. En el cas d’edificis nous, el mètode podria permetre verificar el comportament tèrmic de les parets d’acord amb els paràmetres de disseny. Malgrat això, una revisió bibliogràfica posterior va posar de manifest que encara hi ha una bretxa en la estandardització d’aquest mètode per la diagnosi in-situ. Considerant aquest aspecte, es van desenvolupar tres estudis per tal de millorar l’aplicabilitat de la termografia quantitativa interna dins el camp de la indústria de la construcció. En primer lloc, es va analitzar la influència de les condicions operatives en la determinació de la transmitància tèrmica mesurada a través duna cambra experimental amb una façana simple sota un ampli rang de diferència de temperatura (3.8 < DT < 21ºC). En segon lloc, es van dur a terme tests en un parc d’habitatges públics constituïts per quatre pisos desocupats (sense sistemes elèctrics ni de calefacció en funcionament), amb la finalitat d’analitzar la influència de les propietats termofísiques no transitòries (ex. la capacitat de calor per unitat d’àrea) en la precisió del mètode. En tercer lloc, es va proposar i validar un mètode de processat de dades basat en l’anàlisi de sèries de temps de la U-value mitjançant sis parets compostes. L’objectiu era trobar un criteri comú per aturar la prova quan no són necessàries més dades per obtenir un resultat fiable. Havent investigat els aspectes mencionats anteriorment, es pot extrapolar que: (i) el gradient de temperatura òptim es troba entre 7 i 16ºC; (ii) la variància en la transmitància tèrmica podria ser principalment atribuïda a canvis en la temperatura ambient de l’aire exterior; (iii) la IRT quantitativa interna és més acurada en parets compostes amb altes capacitats de calor per unitat d’àrea, aconseguint unes desviacions màximes del 0.20%; (iv) el test podria ser executat en només 30 minuts; (v) el mètode podria permetre l’avaluació d’aspectes relacionats amb la determinació de la U-value en edificis desocupats per T sota 10ºC, especialment a Espanya o països europeus amb un clima mediterrani on aquestes condicions de test podrien representar una limitació. Per tant, la presa de decisions es podria simplificar en entorns construïts reals.
De fet, aquesta recerca podria conduir a una millor execució del procés de rehabilitació en edificis que s’espera que tinguin deficiències l’any 2050, augmentant així la taxa de renovació europea a mig termini.
La dissertació conclou resumint les principals aportacions d’aquesta investigació. Els temes que s’han plantejat durant la recerca realitzada, i que no es van poder abordar, es comenten i es proposen com a línies de treball futures.Postprint (published version
Contributions to the determination of thermal behaviour of façades using quantitative internal IRT (Infrared Thermography)
Within the European framework, most of residential buildings do not satisfy the minimum thermal specifications. In fact, the renovation rate across the EU is estimated at 1% per year. To fulfil with the goals stated by European Directives 2010/31/EU and 2012/27/EU, it is necessary to ensure a minimum energy performance gap. From a thorough literature review, it was detected that the thermal behavior of a building is often underestimated or neglected during its construction and operation stages. For this reason, an accurate non-destructive testing (NDT) should be required, improving the shortcomings given by the current modelling tools and diagnostic techniques. The purpose of this thesis was to develop a method for determining in-situ the thermal behavior of façades under steady-state conditions using quantitative internal infrared thermography (IRT). After drawing up a numerical model to estimate the thermal transmittance (U-value) as a key parameter of the built quality, the dissertation continued with a validation process that was executed in two typical Spanish walls from different construction periods. This allowed: (i) refining the proposed method; (ii) exploring the boundaries conditions; (iii) assessing the influence of tabulated values set by international standards for wall emissivity and convective heat transfer coefficients among other aspects. The results revealed lower deviations related to the theoretical U-values (1.24 to 3.97%) for test durations of 2-3 hours. Furthermore, the results demonstrated that the use of tabulated values might entail high deviations (40%) in heavy multi-leaf walls with low U-values. Broadly, construction project documents for existing buildings, especially the oldest ones, are not available. Hence, this method may provide information about the building envelope for future refurbishment. In the case of new buildings, the method might allow the thermal behaviour of building façades to be checked according to the design parameters. Despite this, a subsequent literature review highlighted that a gap in the standardization of this method for in-situ building diagnostics is still to fill. Considering this aspect, three studies were developed in order to enhance the applicability of the quantitative internal IRT within the construction industry field. Firstly, the most influential operating conditions were analyzed through an experimental room with a heavy single-leaf wall tested under a wide temperature difference range (3.8 < DT < 21ºC). Secondly, this dissertation performed tests in a public housing stock comprised of four unoccupied buildings (without electric and heating systems in operation), to assess the influence of non-transient thermophysical properties of the wall (i.e. heat capacity per unit of area) on the accuracy of the method. Thirdly, a data-processing method based on U-value time series analysis was proposed and validated through six building façades with heavy multi-leaf walls. The aim was to find a common criterion for stopping the test when it is not necessary more data to obtain a reliable result. Having investigated the aspects mentioned above, it can be extrapolated that: (i) the optimum temperature difference range is found to be between 7 and 16ºC; (ii) the variance in the thermal transmittance could mainly be predicted by changes in the outer air temperature; (iii) the quantitative internal IRT is more accurate in heavy multi-leaf walls with high heat capacities per unit of area, reaching maximum deviations of 0.20%; (iv) the test might be executed in only 30 minutes; (v) the method could allow the assessment of aspects related to the determination of U-value of unoccupied buildings for DT under 10ºC, especially in Spain or European countries with a Mediterranean climate where these test conditions might represent a limitation. Hence, the decision-making could be streamlined in real built environments, increasing the European renovation rate in the mid-term.Dins el Marc Europeu, la majoria dels edificis residencials no satisfan les especificacions tèrmiques mínimes. De fet, la taxa de renovació a Europa és estimada en 1% anual. Per complir amb els objectius de les Directives Europees 2010/31/UE i 2012/27/UE, és necessari assegurar una bretxa energètica mínima. A partir d'un estat de l'art exhaustiu, es va detectar que el comportament tèrmic d'un edifici sovint és subestimat o negligit durant les etapes de construcció i operació. Per aquest motiu, una prova no destructiva i precisa hauria de ser requerida, per tal de millorar les deficiències donades per les actuals eines de modelització i diagnosi d'edificis. El propòsit de la tesi era desenvolupar un mètode per determinar in-situ el comportament tèrmic de les façanes sota condicions estacionàries mitjançant la termografia quantitativa interna (IRT). Després d'elaborar un model numèric per estimar la transmitància tèrmica (U-value) com a paràmetre clau de la qualitat construïda, la dissertació va continuar amb un procés de validació executat en dues parets típiques espanyoles de diferents períodes de construcció. Això va permetre: (i) refinar el mètode proposat; (ii) explorar les condicions de contorn; (iii) avaluar la influència dels valors tabulats establerts per les normatives internacionals per l'emissivitat de la paret i els coeficients de transferència de calor per convecció. Els resultats van revelar baixes desviacions respecte als valors teòrics de transmitància tèrmica (1.24 a 3.97%) per duracions de test entre 2 i 3 hores. A més a més, els resultats van demostrar que l’ús de valors tabulats podria implicar altes desviacions (40%) en parets compostes. En general, els projectes de construcció d'edificis existents antics no estan disponibles. Per tant, aquest mètode podria proporcionar informació sobre la façana per futures rehabilitacions. En el cas d’edificis nous, el mètode podria permetre verificar el comportament tèrmic de les parets d’acord amb els paràmetres de disseny. Malgrat això, una revisió bibliogràfica posterior va posar de manifest que encara hi ha una bretxa en la estandardització d’aquest mètode per la diagnosi in-situ. Considerant aquest aspecte, es van desenvolupar tres estudis per tal de millorar l’aplicabilitat de la termografia quantitativa interna dins el camp de la indústria de la construcció. En primer lloc, es va analitzar la influència de les condicions operatives en la determinació de la transmitància tèrmica mesurada a través duna cambra experimental amb una façana simple sota un ampli rang de diferència de temperatura (3.8 < DT < 21ºC). En segon lloc, es van dur a terme tests en un parc d’habitatges públics constituïts per quatre pisos desocupats (sense sistemes elèctrics ni de calefacció en funcionament), amb la finalitat d’analitzar la influència de les propietats termofísiques no transitòries (ex. la capacitat de calor per unitat d’àrea) en la precisió del mètode. En tercer lloc, es va proposar i validar un mètode de processat de dades basat en l’anàlisi de sèries de temps de la U-value mitjançant sis parets compostes. L’objectiu era trobar un criteri comú per aturar la prova quan no són necessàries més dades per obtenir un resultat fiable. Havent investigat els aspectes mencionats anteriorment, es pot extrapolar que: (i) el gradient de temperatura òptim es troba entre 7 i 16ºC; (ii) la variància en la transmitància tèrmica podria ser principalment atribuïda a canvis en la temperatura ambient de l’aire exterior; (iii) la IRT quantitativa interna és més acurada en parets compostes amb altes capacitats de calor per unitat d’àrea, aconseguint unes desviacions màximes del 0.20%; (iv) el test podria ser executat en només 30 minuts; (v) el mètode podria permetre l’avaluació d’aspectes relacionats amb la determinació de la U-value en edificis desocupats per T sota 10ºC, especialment a Espanya o països europeus amb un clima mediterrani on aquestes condicions de test podrien representar una limitació. Per tant, la presa de decisions es podria simplificar en entorns construïts reals.
De fet, aquesta recerca podria conduir a una millor execució del procés de rehabilitació en edificis que s’espera que tinguin deficiències l’any 2050, augmentant així la taxa de renovació europea a mig termini.
La dissertació conclou resumint les principals aportacions d’aquesta investigació. Els temes que s’han plantejat durant la recerca realitzada, i que no es van poder abordar, es comenten i es proposen com a línies de treball futures
Evaluation of thermal comfort in elderly care centres (ECC)
The demand for elderly care centres (ECCs) is increasing as the population ages. This paper presents a field investigation on the thermal comfort of elderly in ECC and compares the outputs of existing thermal comfort standards with perceived thermal comfort of the elderly occupants of the building. Indoor and outdoor conditions were measured along the year and in different zones of an ECC (bedrooms, living rooms and dining rooms). A questionnaire survey to the residents was used to gather the occupants’ thermal satisfaction. The findings indicate that standards based on adaptive models to evaluate the thermal comfort in elderly people are more precise than those based on the predicted mean vote (PMV). Results also highlight that this group prefers higher temperatures than the rest of the population. The findings also suggest that the time of the day and if the space is air conditioned do also influence thermal comfort in ECCs. These results can help standardise thermal comfort of elderly people.Postprint (published version
Assessing the influence of operating conditions and thermophysical properties on the accuracy of in-situ measured U-values using quantitative internal infrared thermography
Within the European context, most of the current residential building stock does not fulfil minimum thermal requirements and needs to be refurbished urgently. Quantitative internal infrared thermography can provide valuable information about the in-situ thermal transmittance of existing buildings for their future refurbishment. This paper aims to establish how operating conditions and thermophysical properties might affect the accuracy of the measured U-value using this technique. To assess the most influential operating conditions, one experimental room with a heavy single leaf-wall was chosen to develop the research in quasi steady-state conditions, with a wide temperature difference range (3.8<¿T<21°C). A statistical analysis demonstrated that the variance in thermal transmittance could mainly be predicted by changes in the outer air temperature. To analyze the impact of the thermophysical properties, specifically the heat capacity per unit of area, four unoccupied residential buildings with heavy multi-leaf walls were tested (6<¿T<10°C). The results mainly showed that the quantitative internal infrared thermography method is more accurate in heavy multi-leaf walls with high kappa values, reaching maximum deviations of 0.20%.Peer ReviewedPostprint (author's final draft
Compensación de la calidad del aire interior, el confort térmico y el consumo de energía para edificios educativos
In recent years, poor indoor air quality and thermal comfort have been widely reported in related studies on indoor environmental quality in classrooms. Improving indoor air quality through ventilation is common and effective. However, it compromises occupant’s thermal comfort and well-being, thereby consuming more energy to meet increased heating or cooling demand and challenging energy conservation for Sustainable Development Goal 7. The existing researches imply the significance of conducting an extensive review on the three domains mentioned above (indoor air quality, thermal comfort, and energy consumption) in educational buildings, as individual cases are of peculiarity due to the specific characteristics of buildings and occupants. In contrast, the standards for indoor air quality and thermal comfort in educational buildings are not explicit and unified for all countries. This paper summarizes relevant features from reviewed cases, including: the geographic and demographic characteristics, field investigation parameters, indoor air quality and thermal comfort standards, ventilation protocols, heating and cooling strategies, energy consumption, as well as important and valuable findings in order to investigate the progress on such a topic.Objectius de Desenvolupament Sostenible::3 - Salut i BenestarObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version
U-value time series analyses: Evaluating the feasibility of in-situ short-lasting IRT tests for heavy multi-leaf walls
A gap in standardization of quantitative infrared thermography (IRT) directly leads to a lack of measurement pattern for determining in-situ U-values of heavy multi-leaf walls. Three groups of causal factors might influence the estimation of this build quality indicator: operating conditions, thermophysical properties and technical conditions. Focusing on the last one, previous studies underlined the difficulties of measuring below 3¿h. In contrast to active IRT, no algorithms have been found to process images, despite playing an important role in the effectiveness and robustness of IRT. The traditional approach involves analysing from 120 to 7200 thermograms with a data acquisition interval of 1¿min up to 1¿s respectively. The aim of this paper was to critically assess the test duration that is traditionally used. Six real heavy multi-leaf walls were tested under a stationary regime as a stochastic process of underlying data. For the first time, a research based on two U-value time series analyses (statistical tests and a signal modelling technique by MATLAB) demonstrated the feasibility of short-lasting IRT tests. Moreover, this research posed an innovative data management tool to automate this non-destructive testing (NDT) in mid-term, stopping IRT tests in real time once the right level of accuracy was achieved.Postprint (author's final draft
Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades
The thermal behaviour of a building is often underestimated or neglected during its construction and operation stages. In recent years, the heat flux meter (HFM) method has been commonly used to determine the U-value, a key parameter for assessing the thermal quality of the building envelope in steady-state conditions. However, this non-invasive test takes at least 72 h to execute, the accuracy is
14–28%, and it is not reliable for non-homogeneous building elements. An alternative technique is based on infrared thermography (IRT). Although it is generally used for qualitative analysis, quantitative internal IRT methods may also be adopted for in-situ measurement of the U-value. This research presents
a method for determining in-situ U-values using quantitative internal IRT with a deviation of 1–2% for single-leaf walls and 3–4% for multi-leaf walls. It takes 2–3 h and can be used to provide information about the building envelope for the future refurbishment of existing buildings or to check the thermal behaviour of new building façades according to their design parameters.Peer ReviewedPostprint (author's final draft
Evaluating the freeze–thaw phenomenon in sandwich-structured composites via numerical simulations and infrared thermography
The water ingress phenomenon in sandwich-structured composites used in the aerospace/aeronautical sector is a current issue. This type of defect can cause in the course of time several other defects at the boundary, such as corrosions, deformations, detachments. In fact, water may change its state of physical matter going towards the freeze–thaw cycle caused by the atmosphere re-entry of, e.g. space probes. In this work, the alveoli of a composite laminate have been filled with water, which was initially transformed into ice. By taking into account, the known quantity of water, the freeze–thaw cycle was simulated by Comsol Multiphysics® software, reproducing exactly the shape of the sandwich as well as the real conditions in which it was subsequently subjected in a climatic chamber. The experimental part consisted of monitoring the front side of the specimen by means of a thermal camera operating into the long-wave infrared spectrum, and by setting both the temperature and the relative humidity of the test chamber according to the values imposed during the numerical simulation step. It was found that the numerical and experimental temperature trends are in good agreement with each other since the model was built by following a physico-chemical point-of-view. It was also seen that the application of the independent component thermography (ICT) technique was able both to retrieve the positions of the defects (i.e. the water inclusions) and to characterize the defects in which a detachment (fabricated between the fibres and the resin) is present; the latter was realized above an inclusion caused by the water ingress. To the best of our knowledge, this is the first time that ICT is applied to satisfy this purpose.Postprint (author's final draft
Nuevo protocolo para el desarrollo y evaluación de la competencia de trabajo en equipo en entornos remotos
Under COVID scenario, it has been observed that the constraints derived from remote teaching makes harder an already challenging task: the achievement of teamwork skills and their assessment. This study, which is part of the UPC-ICE “EQUIPA'T” teaching innovation project, aims to design a new protocol for the development of academic projects and the individualized evaluation of university students regardless the field of knowledge within engineering. To that end, eight functionalities have been identified: (i) quantification of the individual contribution; (ii) group dynamics and individual roles; (iii) internal team management; (iv) communication; (v) creativity (brainstorming / concept map); (vi) design thinking; (vii) repository; (viii) content development (previous ideas about concepts). For each of them, a series of indicators, activities, and tools have been defined to allow the development of the aforementioned functions in face-to-face and remote environments. In addition, an analysis has been carried out to determine the implementation of the protocol by professors in the pilot stage of the project.The authors would like to thank ICE - UPC for the finantial support under "EQUIPA'T" project (reference G/22930/GEN)Postprint (published version
Sustainable deployment of energy efficient district heating: city business model
Heating and cooling account for 50% of the European Union's energy consumption and, therefore, reducing its impact is essential to minimise dependency on energy imports (particularly fossil fuel), which are bound to geopolitical conflicts. District heating arises as a critical player in this transition towards a more efficient energy framework. Despite its numerous advantages, implementation is still hindered by inadequate District Heating business models and incentives. This study conducts a holistic examination on the feasibility, effectiveness and, ultimately, the efficiency of establishing a publicly owned and public-privately managed District Heating infrastructure network via a pilot intervention in the city of San Sebastian in the north of Spain. A Value Proposition Canvas, Value Creation Ecosystem and City Model Canvas analysis provides insight into fundamental patterns and relevant recommendations for other municipalities trying to find a business model in which all the involved stakeholders can capture value while addressing at the same time the energy challenges of cities.Authors would like to acknowledge the direct and timely collaboration with experts from San Sebastian. The authors acknowledge the support from the European Union’ Horizon 2020 Research and Innovation Programme’ under the grant agreements No 6917535 (REPLICATE Project). This work was supported by Catalan agency AGAUR trough their research groups support program (2021 SGR 00341). Finally, authors wishes to recognise the support from Serra Hunter programme.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.1 - Per a 2030, garantir l’accés universal a serveis d’energia assequibles, confiables i modernsObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el conjunt de fonts d’energiaObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.3 - Per a 2030, duplicar la taxa mundial de millora de l’eficiència energèticaObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.1 - Desenvolupar infraestructures fiables, sostenibles, resilients i de qualitat, incloent infraestructures regionals i transfrontereres, per tal de donar suport al desenvolupament econòmic i al benestar humà, amb especial atenció a l’accés assequible i equitatiu per a totes les personesObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura::9.2 - Promoure una industrialització inclusiva i sostenible i, a tot tardar el 2030, augmentar de manera significativa la contribució de la indústria a l’ocupació i al producte interior brut, d’acord amb les circumstàncies nacionals, i duplicar aquesta contribució als països menys avançatsObjectius de Desenvolupament Sostenible::13 - Acció per al ClimaObjectius de Desenvolupament Sostenible::13 - Acció per al Clima::13.2 - Incorporar mesures relatives al canvi climàtic en les polítiques, les estratègies i els plans nacionalsObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.1 - Per a 2030, assegurar l’accés de totes les persones a habitatges i a serveis bàsics adequats, segurs i assequibles, i millorar els barris marginalObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.b - Per a 2020, augmentar substancialment el nombre de ciutats i assentaments humans que adopten i posen en marxa polítiques i plans integrats per promoure la inclusió, l’ús eficient dels recursos, la mitigació del canvi climàtic i l’adaptació a aquest, així com la resiliència davant dels desastres, i desenvolupar i posar en pràctica una gestió integral dels riscos de desastre a tots els nivells, d’acord amb el Marc de Sendai per a la reducció del risc de desastres 2015.2030Postprint (published version