11 research outputs found

    Hybrid Systems and Control With Fractional Dynamics (I): Modeling and Analysis

    Full text link
    No mixed research of hybrid and fractional-order systems into a cohesive and multifaceted whole can be found in the literature. This paper focuses on such a synergistic approach of the theories of both branches, which is believed to give additional flexibility and help to the system designer. It is part I of two companion papers and introduces the fundamentals of fractional-order hybrid systems, in particular, modeling and stability analysis of two kinds of such systems, i.e., fractional-order switching and reset control systems. Some examples are given to illustrate the applicability and effectiveness of the developed theory. Part II will focus on fractional-order hybrid control.Comment: 2014 International Conference on Fractional Differentiation and its Application, Ital

    Hybrid Systems and Control With Fractional Dynamics (II): Control

    Full text link
    No mixed research of hybrid and fractional-order systems into a cohesive and multifaceted whole can be found in the literature. This paper focuses on such a synergistic approach of the theories of both branches, which is believed to give additional flexibility and help the system designer. It is part II of two companion papers and focuses on fractional-order hybrid control. Specifically, two types of such techniques are reviewed, including robust control of switching systems and different strategies of reset control. Simulations and experimental results are given to show the effectiveness of the proposed strategies. Part I will introduce the fundamentals of fractional-order hybrid systems, in particular, modelling and stability of two kinds of such systems, i.e., fractional-order switching and reset control systems.Comment: 2014 International Conference on Fractional Differentiation and its Application, Ital

    Corrosion studies on mild steel in contact with cemented waste forms

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:9091.9F(ND-R--1400(R)) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Frequency response of IPMC actuators: Physical characterization and identification for control

    Get PDF
    Ionic polymer metal composite (IPMC) actuators have promising applications in robotics and medicine in a not distance future, which will require a big knowledge in different fields, such as, manufacturing, material characterization and control theory. In this paper, frequency response of several IPMC actuators, cut from the same bulk IPMC sheet with a micro laser etching machine, is analyzed. Specifically, the objective is to1) characterize each actuator, i.e., determine how cutting affects to the parameters of the physical model of this kind of actuators, and 2) identify a model for each actuator for control purposes. The frequency responses have been obtained experimentally in LabVIEW by attaching a couple of gold electrodes to each IPMC unit and measuring the tip deflection by means of a laser distance meter.Mechatronic Systems Desig

    Frequency response of IPMC actuators: Physical characterization and identification for control

    No full text
    Ionic polymer metal composite (IPMC) actuators have promising applications in robotics and medicine in a not distance future, which will require a big knowledge in different fields, such as, manufacturing, material characterization and control theory. In this paper, frequency response of several IPMC actuators, cut from the same bulk IPMC sheet with a micro laser etching machine, is analyzed. Specifically, the objective is to1) characterize each actuator, i.e., determine how cutting affects to the parameters of the physical model of this kind of actuators, and 2) identify a model for each actuator for control purposes. The frequency responses have been obtained experimentally in LabVIEW by attaching a couple of gold electrodes to each IPMC unit and measuring the tip deflection by means of a laser distance meter
    corecore