32 research outputs found

    Search for protostellar jets with UWISH2 in the molecular cloud complexes Vulpecula and IRDC G53.2

    Get PDF
    Jets and outflows are the early signposts of stellar birth. Using the UKIRT Wide Field Infrared Survey for H2 (UWISH2) at 2.12 μm, 127 outflows are identified in molecular cloud complexes Vulpecula OB1 and IRDC G53.2 covering 12 square degrees of the Galactic plane. Using multi-wavelength datasets, from 1.2 to 70 μm, 79 young stellar objects (YSOs) are proposed as potential driving sources, where, ∼79 % are likely Class 0/I protostars, 17 % are Class II YSOs and the remaining 4 % are Class III YSOs. The outflows are characterized in terms of their length, flux, luminosity and knot-spacing. The identified outflows have a median lobe length of 0.22 pc and 0.17 pc for outflows in Vulpecula OB1 and IRDC G53.2, respectively. Our analysis, from the knot spacing, reveals a typical ejection frequency of ∼1.2 kyr suggesting an intermediate type between the FU-Ori and EX-Ori type of eruptions in both cloud complexes. Furthermore, the physical parameters of the driving sources are obtained by performing radiative transfer modelling to the observed spectral energy distributions (SEDs), which suggest that the outflows are driven by intermediate mass stars. Various observed trends between the outflow properties and the corresponding driving sources, and various interesting outflows and star forming sites, including sites of triggered star formation and protocluster forming clump with clusters of jets, are discussed. The obtained results and the identified jet-bearing protostellar sample will pave the way to understand many aspects of outflows with future high-resolution observations

    Search for particle acceleration in two massive Wolf-Rayet stars using uGMRT observations

    Full text link
    Large wind kinetic power of Wolf-Rayet (WR) stars make them ideal targets in low radio frequencies to search for non-thermal emission due to relativistic particle acceleration. In this paper, we present observations of two WR stars, WR 114 and WR 142, in Band 4 (550-950 MHz) and Band 5 (1050-1450 MHz) using the upgraded Giant Meterwave Radio Telescope (uGMRT). Neither star is detected in the observed frequency bands, nor extended emission associated with them. The upper limit to the free-free radio emission from the stellar wind enables us to constrain the mass-loss rate of WR 114 to ≲10−5 M⊙ yr−1\lesssim \rm 10^{-5}\,M_{ \odot}\,yr^{-1}; this is a factor three smaller than previously estimated using spectroscopic modelling. If we further assume that the WR stars are binaries, the non-detection of synchrotron emission from the putative wind collision region implies that the stars are either in very wide binary systems away from periastron, or that the stars are in close binary systems with an orbital separation <70<70 AU for WR 114 and <20<20 AU for WR 142. The non-detection of low-frequency radio emission from these two systems thus provides evidence that narrows their nature, though it does not rule them out as bonafide particle-accelerating colliding-wind binaries.Comment: 8 pages, 3 figures, accepted for publication in MNRA
    corecore