17 research outputs found

    Base de données protéomiques Top down en reproduction animale

    No full text
    Declaration d'invention DI-RV-16-0009Base de données protéomiques Top down en reproduction animal

    Lipidomics of bovine ovarian follicle using MALDI-TOF Mass Spectrometry

    No full text
    Lipidomics of bovine ovarian follicle using MALDI-TOF Mass Spectrometry. 2. Journées du GdR 3606 Repr

    Intact cell MALDI-TOF MS on sperm: a molecular test for male fertility diagnosis

    No full text
    Currently, evaluation of sperm quality is primarily based on in-vitro measures of sperm function such as motility, viability and/or acrosome reaction. However, results are often poorly correlated with fertility, and alternative diagnostic tools are therefore needed both in veterinary and human medicine. In a recent pilot study, we demonstrated that MS profiles from intact chicken sperm using MALDI-TOF profiles could detect significant differences between fertile/subfertile spermatozoa showing that such profiles could be useful for in-vitro male fertility testing. In the present study, we performed larger standardized experimental procedures designed for the development of fertility- predictive mathematical models based on sperm cell MALDI-TOF MS profiles acquired through a fast, automated method. This intact cell MALDI-TOF MS-based method showed high diagnostic accuracy in identifying fertile/subfertile males in a large male population of known fertility from two distinct genetic lineages (meat and egg laying lines). We additionally identified 40 % of the m/z peaks observed in sperm MS profiles through a top-down high-resolution protein identification analysis. This revealed that the MALDI-TOF MS spectra obtained from intact sperm cells contained a large proportion of protein degradation products, many implicated in important functional pathways in sperm such as energy metabolism, structure and movement. Proteins identified by our predictive model included diverse and important functional classes providing new insights into sperm function as it relates to fertility differences in this experimental system. Thus, in addition to the chicken model system developed here, with the use of appropriate models these methods should effectively translate to other animal taxa where similar tests for fertility are warranted

    Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation

    No full text
    International audienceIntact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (< 17 kDa) of single oocytes, cumulus cells (CC) and granulosa cells (GC), which shared a total of 439 peaks. By comparing the ICM-MS profiles of single oocytes with CC before and after in vitro maturation (IVM), 71 different peaks were characterised, and their relative abundance was found to vary depending on the stage of oocyte meiotic maturation. To identify these endogenous biomolecules, top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. Biological significance Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases

    Photoperiod affects the cerebrospinal fluid proteome: a comparison between short day- and long day-treated ewes

    No full text
    Remerciements :The authors thank Dr Massimiliano Beltramo for his critical revision of the articlePhotoperiod is the main physical synchronizer of seasonal functions and a key factor in the modulation of molecule access to cerebrospinal fluid (CSF) in animals. Previous work has shown that photoperiod affects the transfer rate of steroids and protein hormones from blood to CSF and modulates choroid plexus (CP) tight junction protein content. We hypothesized that the CSF proteome would also be modified by photoperiod. We tested this hypothesis by comparing CSF obtained from the third ventricle of mature, ovariectomized, estradiol-replaced ewes exposed to long day length (LD) or short day length (SD). Variations in CSF protein expression between SD- or LD-treated ewes were studied in pools of CSF collected for 48 h. Proteins were precipitated, concentrated and included in a polyacrylamide gel without protein fractionation. After in-gel tryptic digestion of total protein samples, we analyzed the resulting peptides by nanoliquid chromatography coupled with high resolution tandem mass spectrometry (GeLC-MS/MS). Quantitative analysis was performed using two methods based on Spectral Counting (SC) and eXtracted Ion Chromatograms (XIC). Among 103 identified proteins, 41 were differentially expressed between LD and SD ewes (with P < 0.05 and at least a 1.5-fold difference). Of the 41 differentially expressed proteins, 22 were identified by both methods and 19 using XIC only. Eighteen proteins were more abundant in LD ewes and 23 were more abundant in SD ewes. These proteins are involved in numerous functions including hormone transport, immune system activity, metabolism, and angiogenesis. To confirm proteomic results, two proteins, pigment epithelium-derived factor (PEDF) and gelsolin, for each individual sample of CSF collected under SD or LD were analyzed with western blots. These results suggest an important photoperiod-dependent change in CSF proteome composition. Nevertheless, additional studies are required to assess the role of each protein in seasonal functions

    An integrative omics strategy to assess the germ cell secretome and to decipher Sertoli-germ cell crosstalk in the mammalian testis

    No full text
    International audienceMammalian spermatogenesis, which takes place in complex testicular structures called seminiferous tubules, is a highly specialized process controlled by the integration of juxtacrine, paracrine and endocrine information. Within the seminiferous tubules, the germ cells and Sertoli cells are surrounded by testicular fluid (TF), which probably contains most of the secreted proteins involved in crosstalk between these cells. It has already been established that germ cells can modulate somatic Sertoli cell function through the secretion of diffusible factors. We studied the germ cell secretome, which was previously considered inaccessible, by analyzing the TF collected by microsurgery in an "integrative omics" strategy combining proteomics, transcriptomics, genomics and interactomics data. This approach identified a set of proteins preferentially secreted by Sertoli cells or germ cells. An interaction network analysis revealed complex, interlaced cell-cell dialog between the secretome and membranome of seminiferous cells, mediated via the TF. We then focused on germ cell-secreted candidate proteins, and we identified several potential interacting partners located on the surface of Sertoli cells. Two interactions, APOH/CDC42 and APP/NGFR, were validated in situ, in a proximity ligation assay (PLA). Our results provide new insight into the crosstalk between germ cells and Sertoli cells occurring during spermatogenesis. Our findings also demonstrate that this "integrative omics" strategy is powerful enough for data mining and highlighting meaningful cell-cell communication events between different types of cells in a complex tissue, via a biological fluid. This integrative strategy could be applied more widely, to gain access to secretomes that have proved difficult to study whilst avoiding the limitations of in vitro culture

    Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry

    No full text
    The fertilization ability of male gametes is achieved after their transit through the epididymis where important post-gonadal differentiation occurs in different cellular compartments. Most of these maturational modifications occur at the protein level. The epididymal sperm maturation process was investigated using the ICM-MS (Intact Cell MALDI-TOF MS) approach on boar spermatozoa isolated from four different epididymal regions (immature to mature stage). Differential and quantitative MALDI-TOF profiling for whole cells or sub-cellular fractions was combined with targeted top-down MS in order to identify endogenous biomolecules. Using this approach, 172 m/z peaks ranging between 2 and 20 kDa were found to be modified during maturation of sperm. Using top-down MS, 62 m/z were identified corresponding to peptidoforms/proteoforms with post-translational modifications (MS data are available via ProteomeXchange with identifier PXD001303). Many of the endogenous peptides were characterized as N-, C-terminal sequences or internal fragments of proteins presenting specific cleavages, suggesting the presence of sequential protease activities in the spermatozoa. This is the first time that such proteolytic activities could be evidenced for various sperm proteins through quantification of their proteolytic products. ICM-MS/top-down MS thus proved to be a valid approach for peptidome/degradome studies and provided new contributions to understanding of the maturation process of the male gamete involved in the development of male fertility.Biological significanceThis peptidomic study (i) characterized the peptidome of epididymal spermatozoa from boar (Sus scrofa); (ii) established characteristic molecular phenotypes distinguishing degrees of maturation of spermatozoa during epididymal transit, and (iii) revealed that protease activities were at the origin of numerous peptides from known and unknown proteins involved in sperm maturation and/or fertility processes

    Comparison of lipid profiles and gene expression in granulosa and cumulus cells in bovine

    No full text
    Comparison of lipid profiles and gene expression in granulosa and cumulus cells in bovine. 33. Annual Meeting of the European Embryo Transfer Association (AETE
    corecore