7 research outputs found
Advanced 0–3 ceramic polymer composites for high frequency applications
Abstract
The main object of this thesis was to research injection mouldable 0–3 type ceramic polymer composites and their dielectric and magnetic properties in the GHz frequency region.
The work has been divided into three sections. In the first section, two–phase ceramic polymer composites containing dielectric and magnetic fillers have been investigated and their characteristics analysed by reference to pre–existing mixing rules. The exploitation of these composites in miniaturizing devices, such as antennae, is presented and discussed. The second part describes three phase composites containing different nanosize additives (silver, silicon and alumina fibres) towards improving their dielectric properties. In the third part, some periodical and multilayer structures for ceramic polymer composite layers are proposed.
In the case of two–phase ceramic polymer composites, with 37 vol.% of dielectric filler (Barium Strontium Titanate, BST) embedded into a thermoplastic polymer (ER140) matrix, the highest measured relative permittivity was 15 with a dielectric loss value of 0.008 at 1 GHz. With 43 vol.% of magnetic filler (hexaferrite, CO2Z) in ER182 matrix, the highest achieved relative permeability was 1.8 with a magnetic loss value of 0.077 at 1 GHz. Composites with Co2Z filler provide a 77% size reduction, and could thus be used advantageously in antennae.
It was found that a 2–6 vol.% nanoaddition in BST–ER140 composites enhanced the relative permittivity drastically with only a minor effect on the dielectric losses. In particular, with only 2 vol.% addition of nanosize silver particles into the BST–ER140 composite, a 52% increase in the relative permittivity was obtained, with no significant change in the dielectric losses (tan δε = 0.004).
Vertically and horizontally periodical dielectric composite structures comprising layers of different dielectric properties have been fabricated as well as multilayered structures containing dielectric and magnetic layers. The measurement results indicate that such multimaterial multilayer structures are good candidates for components with reduced dielectric and magnetic losses.Tiivistelmä
Väitöstyön tavoitteena oli tutkia ruiskuvalettavien 0–3 –liitännäisten keraami-polymeerikomposiittien ominaisuuksia erityisesti niiden GHz-taajuusalueen dielektristen ja magneettisten ominaisuuksien kannalta.
Työ on jaettu kolmeen osaan. Ensimmäisessä osassa on tutkittu kaksikomponenttisia keraami-polymeerikomposiitteja, joissa täytemateriaali on joko dielektristä tai magneettista materiaalia. Komposiittien ominaisuuksia on analysoitu jo olemassa olevien seosmallinnuskaavojen avulla. Komposiittien hyödyntämistä erilaisten sovellusten, kuten antennien, minityrisoinnissa on myös käsitelty. Toinen osa käsittelee kolmikomponenttisia komposiitteja, joissa lisäaineena on käytetty pieniä määriä nanomateriaaleja (hopea- ja piipartikkelit sekä alumiinioksidikuitu) tarkoituksena parantaa komposiitin dielektrisiä. Kolmannessa osassa on tutkittu periodisia ja monikerroksisia keraami- polymeerikomposiittirakenteita rakenteita.
Kaksikomponenttisten keraami-polymeerikomposiittien tapauksessa suurin permittiivisyyden arvo 15 dielektristen häviöiden ollessa 0.008 (mittaustaajuus 1 GHz) saatiin komposiitille, jossa dielektristä täytemateriaalia (Barium Strontium Titanaatti, BST) oli 37 tilavuus-% termoplastisessa polymeerimatriisissa (ER140). Korkein saavutettu permeabiliteetin arvo 1.8 magneettisten häviöiden ollessa 0.077 (mittaustaajuus 1 GHz) saatiin komposiitille, jossa magneettista täyteainetta (hexaferriitti, Co2Z) oli 43 tilavuus-% ER182 -matriisissa. Tämä täyteaine mahdollistaa nykyistä jopa 77 % pienempien antennielementtien kehittämisen.
Tukimuksessa todettiin 2–6 tilavuus-% nanomateriaalin lisäyksen BST-ER140 -komposiitteihin kasvattavan permittiivisyyttä merkittävästi juurikaan vaikuttamatta dielektrisiin häviöihin. Erityisesti 2 tilavuus-% hopeananopartikkeleiden lisäys BST-ER140 -komposiitteihin kasvatti permittiivisyyttä 52 % dielektristen häviöiden (tan δε =  0.004) kasvamatta.
Työssä on myös tutkittu periodisesti (vertikaali ja horisontaali) koostettuja dielektrisiä komposiittirakenteita, jossa eri kerroksissa on erilaiset dielektriset ominaisuudet sekä monikerrosrakenteita, joissa vuorottelevat dielektriset ja magneettiset kerrokset. Mittaukset osoittivat, että monimateriaaliset monikerrosrakenteet ovat hyviä kandidaatteja komponentteihin, jotka vaativat pieniä dielektrisiä ja magneettisiä häviöitä
A temperature-responsive copper molybdate polymorph mixture near to water boiling point by a simple cryogenic quenching route
Abstract
Smart temperature-responsive inorganic materials in accessible temperature ranges open up new positions in the technology. Herein, we present for the first time a CuMoO₄ polymorph mixture prepared by a simple cryogenic quenching approach, which offers a fast temperature response close to water boiling temperature for use as a permanent temperature recorder. The new cryogenic quenching technique initiates the formation of a unique polymorph mixture of a deep brown color with a nonuniform combination of γ- and α-CuMoO₄, with the γ phase being confined to the outer region of α-CuMoO₄, which has been prepared by conventional solid-state synthesis. In situ structural analysis and refinement results confirm the presence of CuMoO₄ α and γ polymorphs in which the amount of γ polymorph decreases and that of the α phase increases with temperature, accounting for the irreversible thermochromic behavior. The thermal analysis reveals that the polymorph mixture exhibits a fast response with the color changing from deep brown to bright green with intermediate colors of light brown, yellowish green, and light green depending on the exposure temperature as observed from reflectance measurements
Ultra-low-temperature cofired ceramic substrates with low residual carbon for next-generation microwave applications
Abstract
High-temperature cofired ceramics and low-temperature cofired ceramics are important technologies in the fabrication of multilayer ceramic substrates for discrete devices, electronics packages, and telecommunications. However, there is a place and need for materials with lower fabrication temperatures to decrease the associated energy consumption. The present paper studies the feasibility of two ultra-low sintering temperature cofired ceramic materials, copper molybdate and copper molybdate–Ag2O, sinterable at 650 and 500 °C, respectively, for multilayer substrates using tape casting. The slurry composition developed uses environmentally friendly organics and a nontoxic binder and solvent. Additionally, the green cast tapes exhibit very low residual carbon (less than 5%) after sintering on analysis by X-ray photoelectron spectroscopy. The multilayer substrates show a permittivity value of about 8 with a low dielectric loss in the range of 10–5 to 10–4 in the frequency range of 2–10 GHz along with a low coefficient of thermal expansion in the range of 4–5 ppm/°C and good compatibility with an Al electrode. Thus, these proposed substrates have much promise, with good thermal, mechanical, and dielectric properties comparable to commercial substrates while also providing an energy and environment-friendly solution
Ultra-low sintering temperature ceramic composites of CuMoO₄ through Ag₂O addition for microwave applications
Abstract
The present paper presents ceramic composites with ultralow sintering temperature of 500 °C and densification of 96% by adding small amount (0.5, 1 and 2 wt%) of Ag₂O to CuMoO₄ by simple mixing method. The effect of Ag₂O addition on the structure, microstructure, sintering and thermal as well as microwave dielectric properties of CuMoO4 is also studied. The reduction in the sintering temperature is due to the formation of trace amount (1.4%) of copper silver molybdate (Cu₂Ag₂(MoO₄)₃) as observed from Rietveld refinement analysis as well as backscattered SEM image. Doping has very little influence on the structure and coefficient of thermal expansion that is about 4.7–5.2 ppm/°C. The composites sintered at 500 °C exhibit relative permittivity of about 8–9, quality factor (Qf) of 26000–37000 GHz at 12 GHz, temperature coefficient of resonant frequency of −31–33 ppm/°C and are compatible with Al electrode. The present work results in obtaining well-densified ultralow temperature cofired ceramic composites at low sintering temperature without much structural change and good thermal properties but with different dielectric properties by small doping. These composites can be used as low cost candidates for wide range of microwave applications like multilayer packages and substrates owing to the low energy required during processing and hence can pave way to the advancement of electronic materials
The effect of BaTiO₃ particle shape on complex permittivity of 0.98MgTiO₃–0.02BaTiO₃ composite powders at GHz frequencies
Abstract
The effect of BaTiO₃ particle shape on the properties of 0.98MgTiO₃–0.02BaTiO₃ composite powders was characterized and analyzed using an indirectly coupled open-ended coaxial cavity resonator at gigahertz frequencies. Elongated micrometre sized BaTiO₃ particles were found to have a significantly stronger effect on permittivity when compared to composite powders having micro and nano sized spherical BaTiO₃ particles. Inclusion permittivities and dielectric loss tangents of composite powders increased from that of pure MgTiO₃ powder, 13.3 and 4.6 × 10⁻³, up to 15.7 and 1.7 × 10⁻² with needle shaped BaTiO₃ particles, respectively. The presented results give valuable information for tailoring the properties of dielectrics which can be utilized in the vast field of electronic component manufacturing
Tape casting system for ULTCCs to fabricate multilayer and multimaterial 3D electronic packages with embedded electrodes
Abstract
A 3D multilayer structure built by two ultra‐low temperature co‐fired ceramic (ULTCC) compositions with silver embedded electrodes are co‐fired at a temperature of 450°C. The 3D multilayer module is prepared by laminating the ULTCC green tapes with a new binder system, which organics can be completely burned out at temperature of 250°C before the sintering of the ULTCC 3D modulus. High‐density microstructures are achieved for the sintered module. In this study, the ULTCC feasible binder system is introduced. Also, ULTCC multilayers and multimaterial structures with surface and embedded silver electrodes are fabricated. This research opens up a new horizon for fabrication of electroceramic devices with embedded electrodes in multimaterial devices
Characterization of PMMA/BaTiO₃ composite layers through printed capacitor structures for microwave frequency applications
Abstract
This paper presents the extraction of microwave properties of low-temperature cured inorganic composite materials based on barium titanate (BaTiO 3 ). These composite materials exhibit attractive features such that when the volume fraction of the filler contents varied, its electrical properties of high permittivity and moderately low loss tangent can be manipulated to suit different areas of applications. For the extraction of the permittivity and the loss tangent, three different ink particles were developed and printed on the top of interdigital-shaped microwave capacitor. The properties of the inks were extracted from measured results through computer simulations. The obtained results were verified with several types of interdigital capacitor structures of different fingers and linewidths. The effect of the thickness of the ink layer materials on the top of the capacitor structures was likewise investigated. The results show relative permittivity (εr ) values of 30, 25, and 27 for composite layers printed using inks with Pr. A shape at 67.4 wt% (percentage by weight), Pr. B shape at 66.3 wt%, and Pr. C shape at 67.1 wt% of BaTiO3, respectively, at 2 GHz. Corresponding loss tangents (tan δ) were 0.065, 0.040, and 0.025. The dielectric properties of the composite materials are influenced by the thickness variation of the ink layers on the capacitor structures. This novel capacitor composite materials would be a promising candidate for printed application in mobile telecommunication operations, especially in the frequency range of 0.5–3 GHz