The effect of BaTiO₃ particle shape on complex permittivity of 0.98MgTiO₃–0.02BaTiO₃ composite powders at GHz frequencies

Abstract

Abstract The effect of BaTiO₃ particle shape on the properties of 0.98MgTiO₃–0.02BaTiO₃ composite powders was characterized and analyzed using an indirectly coupled open-ended coaxial cavity resonator at gigahertz frequencies. Elongated micrometre sized BaTiO₃ particles were found to have a significantly stronger effect on permittivity when compared to composite powders having micro and nano sized spherical BaTiO₃ particles. Inclusion permittivities and dielectric loss tangents of composite powders increased from that of pure MgTiO₃ powder, 13.3 and 4.6 × 10⁻³, up to 15.7 and 1.7 × 10⁻² with needle shaped BaTiO₃ particles, respectively. The presented results give valuable information for tailoring the properties of dielectrics which can be utilized in the vast field of electronic component manufacturing

    Similar works

    Full text

    thumbnail-image