380 research outputs found
Recommended from our members
Protein domain organisation: adding order.
BACKGROUND: Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. RESULTS: We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. CONCLUSION: Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected degree of clustering and more domain pairs in forward and reverse orientation in different proteins relative to random graphs with identical degree distributions. While these features were statistically over-represented, they are still fairly rare. Looking in detail at the proteins involved, we found strong functional relationships within each cluster. In addition, the domains tended to be involved in protein-protein interaction and are able to function as independent structural units. A particularly striking example was the human Jak-STAT signalling pathway which makes use of a set of domains in a range of orders and orientations to provide nuanced signaling functionality. This illustrated the importance of functional and structural constraints (or lack thereof) on domain organisation.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
The developmental expression dynamics of Drosophila melanogaster transcription factors.
BACKGROUND: Site-specific transcription factors (TFs) are coordinators of developmental and physiological gene expression programs. Their binding to cis-regulatory modules of target genes mediates the precise cell- and context-specific activation and repression of genes. The expression of TFs should therefore reflect the core expression program of each cell. RESULTS: We studied the expression dynamics of about 750 TFs using the available genomics resources in Drosophila melanogaster. We find that 95% of these TFs are expressed at some point during embryonic development, with a peak roughly between 10 and 12 hours after egg laying, the core stages of organogenesis. We address the differential utilization of DNA-binding domains in different developmental programs systematically in a spatio-temporal context, and show that the zinc finger class of TFs is predominantly early expressed, while Homeobox TFs exhibit later expression in embryogenesis. CONCLUSIONS: Previous work, dissecting cis-regulatory modules during Drosophila development, suggests that TFs are deployed in groups acting in a cooperative manner. In contrast, we find that there is rapid exchange of co-expressed partners amongst the fly TFs, at rates similar to the genome-wide dynamics of co-expression clusters. This suggests there may also be a high level of combinatorial complexity of TFs at cis-regulatory modules.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Networks for all
A report on the Cold Spring Harbor Laboratory/Wellcome Trust conference on Network Biology, Hinxton, UK, 27-31 August 2008
Recommended from our members
SpatialDE: identification of spatially variable genes.
Technological advances have made it possible to measure spatially resolved gene expression at high throughput. However, methods to analyze these data are not established. Here we describe SpatialDE, a statistical test to identify genes with spatial patterns of expression variation from multiplexed imaging or spatial RNA-sequencing data. SpatialDE also implements 'automatic expression histology', a spatial gene-clustering approach that enables expression-based tissue histology
Single cell transcriptomics comes of age
Single cell transcriptomics technologies have vast potential in advancing our understanding of biology and disease. Here, Sarah Aldridge and Sarah Teichmann review the last decade of technological advancements in single-cell transcriptomics and highlight some of the recent discoveries enabled by this technology
Recommended from our members
Cell Atlas technologies and insights into tissue architecture.
Since Robert Hooke first described the existence of 'cells' in 1665, scientists have sought to identify and further characterise these fundamental units of life. While our understanding of cell location, morphology and function has expanded greatly; our understanding of cell types and states at the molecular level, and how these function within tissue architecture, is still limited. A greater understanding of our cells could revolutionise basic biology and medicine. Atlasing initiatives like the Human Cell Atlas aim to identify all cell types at the molecular level, including their physical locations, and to make this reference data openly available to the scientific community. This is made possible by a recent technology revolution: both in single-cell molecular profiling, particularly single-cell RNA sequencing, and in spatially resolved methods for assessing gene and protein expression. Here, we review available and upcoming atlasing technologies, the biological insights gained to date and the promise of this field for the future
Functional protein divergence in the evolution of Homo sapiens.
BACKGROUND: Protein-coding regions in a genome evolve by sequence divergence and gene gain and loss, altering the gene content of the organism. However, it is not well understood how this has given rise to the enormous diversity of metazoa present today. RESULTS: To obtain a global view of human genomic evolution, we quantify the divergence of proteins by functional category at different evolutionary distances from human. CONCLUSION: This analysis highlights some general systems-level characteristics of human evolution: regulatory processes, such as signal transducers, transcription factors and receptors, have a high degree of plasticity, while core processes, such as metabolism, transport and protein synthesis, are largely conserved. Additionally, this study reveals a dynamic picture of selective forces at short, medium and long evolutionary timescales. Certain functional categories, such as 'development' and 'organogenesis', exhibit temporal patterns of sequence divergence in eukaryotes relative to human. This framework for a grammar of human evolution supports previously postulated theories of robustness and evolvability.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Patterns of evolutionary constraints on genes in humans
<p>Abstract</p> <p>Background</p> <p>Different regions in a genome evolve at different rates depending on structural and functional constraints. Some genomic regions are highly conserved during metazoan evolution, while other regions may evolve rapidly, either in all species or in a lineage-specific manner. A strong or even moderate change in constraints in functional regions, for example in coding regions, can have significant evolutionary consequences.</p> <p>Results</p> <p>Here we discuss a novel framework, 'BaseDiver', to classify groups of genes in humans based on the patterns of evolutionary constraints on polymorphic positions in their coding regions. Comparing the nucleotide-level divergence among mammals with the extent of deviation from the ancestral base in the human lineage, we identify patterns of evolutionary pressure on nonsynonymous base-positions in groups of genes belonging to the same functional category. Focussing on groups of genes in functional categories, we find that transcription factors contain a significant excess of nonsynonymous base-positions that are conserved in other mammals but changed in human, while immunity related genes harbour mutations at base-positions that evolve rapidly in all mammals including humans due to strong preference for advantageous alleles. Genes involved in olfaction also evolve rapidly in all mammals, and in humans this appears to be due to weak negative selection.</p> <p>Conclusion</p> <p>While recent studies have identified genes under positive selection in humans, our approach identifies evolutionary constraints on Gene Ontology groups identifying changes in humans relative to some of the other mammals.</p
- …