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Since Robert Hooke first described the existence of ‘cells’ in 1665, scientists have
sought to identify and further characterise these fundamental units of life. While our
understanding of cell location, morphology and function has expanded greatly; our
understanding of cell types and states at the molecular level, and how these function
within tissue architecture, is still limited. A greater understanding of our cells could revolu-
tionise basic biology and medicine. Atlasing initiatives like the Human Cell Atlas aim to
identify all cell types at the molecular level, including their physical locations, and to
make this reference data openly available to the scientific community. This is made pos-
sible by a recent technology revolution: both in single-cell molecular profiling, particularly
single-cell RNA sequencing, and in spatially resolved methods for assessing gene and
protein expression. Here, we review available and upcoming atlasing technologies, the
biological insights gained to date and the promise of this field for the future.

Introduction
Cell atlasing initiatives have expanded rapidly in recent years; with the goal of identifying at the
molecular level, and therefore aiming to better understand, cell types in different organisms and
model systems. These initiatives include the Human Cell Atlas and allied projects such as the Mouse
Cell Atlas/Tabula Muris and the Malaria Cell Atlas among others [1–3]. The number of publications
aiming to comprehensively identify new cell types and the resulting volume of raw data made publicly
available has increased substantially in the last decade. Therein lies the challenge and benefit of such
initiatives — the datasets generated are generally very large resources that will require the input of
many specialists across the scientific community to analyse and validate; therefore, we are unlikely to
understand the full benefits of these studies for several years. However, even in the first stages of ana-
lysis, these projects have given significant new biological insights, outlined at the end of this review.
These data also offer huge potential for medicine, drug discovery and diagnostics through a more
detailed understanding of cell types, basic biological processes and disease states.
A major driver behind the expansion of atlasing initiatives in recent years is the advent of single-cell

RNA sequencing technology, particularly massively parallel sequencing, which allows the generation
of whole-transcript (mRNA) data from thousands of cells quickly and easily. However, these technolo-
gies require tissues to be dissociated to single cells, a process that is usually biased and loses the cells’
physical context. Given that each cell’s position within a tissue is often critical for its function, tech-
nologies are emerging to understand the spatial location of cells within tissue architecture. This review
will focus upon these two classes of atlasing technology: large-scale single-cell sequencing advances
and spatially resolved methods.

The single-cell RNA sequencing revolution
Assessment of gene expression in tissues and model systems is a valuable way of understanding their
cellular composition and function, and the changes that occur during disease or drug treatment. For
many years, PCR, microarray and ‘bulk’ RNA sequencing required hundreds or thousands of cells to
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be pooled, giving a population-level view that could not distinguish rare cell populations or whether gene
expression changes were due to a strong response in a few cells or weaker response across all cells. Single-cell
qPCR first allowed these assessments in individual cells, but was limited in the number of genes detectable [4–6].
In 2009, Tang et al. [7] published the first whole-transcriptome single-cell mRNA sequencing on mouse blasto-
meres. Over the following 5 years, many new methods were developed and improved: notably STRT-seq [8, 9],
SMART-seq [10], CEL-seq [11] and SMART-seq2 [12]. These technologies sequenced mRNA 50 ends (STRT-seq),
30 ends (CEL-seq) or full-length mRNA (SMART-seq/SMART-seq2) and either used in vitro transcription
(CEL-seq) or PCR-based amplification (STRT-seq/SMART-seq/SMART-seq2). In vitro transcription provides
linear amplification but is time-consuming; PCR-based amplification is quicker but suffers from bias due to its
exponential nature. These initial approaches were low-throughput and labour-intensive, run on a few dozen
manually picked cells or on flow-sorted 96 well plates.
In 2014, MARS-Seq was published, which used liquid handling in 384 well plates to massively increase the

number of cells that could be sequenced to over 1000 [13]. Thereafter followed nanowell, droplet and in situ
techniques, all of which used barcoding to mark transcripts coming from the same cell, thus making it possible
to sequence tens of thousands of cells in parallel [14–20]. As well as per-cell barcodes, all of the larger-scale
techniques incorporate unique molecular identifiers (UMIs); random 4–8 bp sequences that label each individ-
ual mRNA molecule in that cell, allowing individual molecule counting to compensate for PCR bias. To
achieve high cell yield in a cost-effective manner, these methods rely on pooling the bead-bound mRNA or
first-strand products from all cells and sequencing only the 50 or 30 end of transcripts at low depth, therefore,
losing the ability to study splice isoforms and SNPs, which is feasible with full-length data [21]. A summary of
scRNAseq methods is presented in Table 1 and Figure 1.
Nanowell methods such as Cytoseq [14], Seq-well [15], Seq-well S^3 [22] and Microwell-seq [1] rely on

gravity to load cells with a Poisson distribution into picolitre-sized wells. Oligo-dT beads with UMIs, cell bar-
codes and a PCR handle are then loaded into all wells. As nanowells are often transparent, they allow the
opportunity to observe the captured cells under the microscope, such that cell morphology, doublet rate and
sometimes viability or other stainings can be assessed. It is also sometimes feasible to ‘wash-out’ chips if too
many cells (and therefore doublets) are loaded. Stronger lysis buffers can be used than with droplet or plate-
based technologies [15] (with some exceptions, for example, cells can be lysed in the harsh lysis buffer RLT fol-
lowed by mRNA pulldown and SMART-seq2 in plates [23]). However, it is not usually possible to image all
cells without fast microscope platforms adapted for the chips and currently methods that allow linkage between
a cell image and its associated barcode are rare. Well sizes are typically in the order of 30–50 μm which limits

Table 1. scRNAseq technologies

Technology Ref
Cell separation
method

PCR
or IVT?

30, 50 or full-length
data? UMIs? Maximum cell diameter (μm) Throughput

STRT-seq [8,9] Manual/FACS PCR 50 N Dependent on cell collection method Low (10–100 cells)

SMART-seq/
SMART-seq2

[10,12] Manual/FACS PCR Full-length N Dependent on cell collection method Low (10–100 cells)

CEL-seq [11] Manual/FACS IVT 30 N Dependent on cell collection method Low (10–100 cells)

MARS-seq [13] FACS IVT 30 Y Dependent on cell collection method Medium (1000 cells)

Cytoseq [14] Nanowell (gravity) PCR 30 Y <30* High (10 000 cells)

Seq-well/Seq-well S^3 [15,22] Nanowell (gravity) PCR 30 Y <45* High (10 000 cells)

Microwell seq [1] Nanowell (gravity) PCR 30 Y <30* High (10 000 cells)

Drop-seq [17] Droplet PCR 30 Y <125* High (10 000 cells)

In-Drop [16] Droplet IVT 30 Y <60* High (10 000 cells)

SPLiT-seq [18] In situ barcoding PCR 30 Y Unrestricted High (10 000+ cells)

sci-RNA-seq [19] In situ barcoding PCR 30 Y Unrestricted High (10 000+ cells)

Summary of main published scRNAseq methods. PCR, polymerase chain reaction; IVT, in vitro transcription; UMIs, unique molecular identifiers.*Well/droplet size; must
accommodate cell and bead.
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the maximum cell size that can be loaded, making the majority of the gravity-fed microwell platforms unsuit-
able for large cells such as 100 μm cardiomyocytes or oocytes.
Droplet-based methods including Drop-seq and In-Drop [16,17,24] also rely on beads covalently linked to

oligo-dT, UMIs, cell barcode and PCR handle for 30 end sequencing. However, instead of gravity-loading into
wells, cells and beads are captured with Poisson distribution into the water in oil droplets (emulsion). These
serve as mini reaction vessels in which the first-strand synthesis can take place, before pooling by emulsion
breakage, second-strand synthesis and amplification/library preparation. These systems do require more special-
ist equipment than microwell platforms and it is not usually possible to image the cells within the droplets.
The droplet size also limits the maximum cell size that can be captured. However, commercialisation of
droplet-based sequencing, especially launch of the 10× Genomics Chromium platform, has made it a fast,
easy-to-use and popular method for sequencing thousands of single cells in parallel and advances are being
made in incorporating a wider range of cell sizes.
The most recent scRNAseq techniques use in situ barcoding [18,19], in which cells are labelled with multiple

barcodes by pooling and splitting the cells at each stage of RT/ligation/PCR, resulting in up to a million poten-
tial barcode combinations and therefore the possibility of labelling tens to hundreds of thousands of cells per
sample. This method has the advantage of not requiring specialist commercial equipment, multiplexing many
samples at a time and is compatible with fixed cells or nuclei, whereas other methods typically use fresh cell
suspensions.
As published scRNAseq methods advance, these are being rapidly commercialised (Table 2). One of the first

marketed systems was the Fluidigm C1, which used integrated microfluidic circuits to capture, lyse and reverse
transcribe up to 96 single cells using a full-length mRNA Smart-Seq2-based protocol. Different cell sizes were
captured on different chips and with suitable equipment, each cell could be imaged and this information linked
to its transcriptomic data. As single-cell sequencing expanded in scale, this system was adapted to capture up
to 800 cells using 30 end sequencing.
With the advent of droplet sequencing emerged the 10× Genomics Chromium [25] platform and Dolomite

Bio’s Drop-seq-based Nadia platform. These systems typically capture 5000–10 000 cells per channel depending
on cell concentration loaded (eight channels can be run in parallel on both) in droplets of 50–60 mm on the
10× Chromium and up to 100 mm on the Nadia Innovate. Both platforms utilise a template switching, 30 end-
counting protocol in which individual transcripts are labelled with UMIs. In spite of high per-sample costs, the
fast robust workflows and excellent cell yields have made droplet scRNAseq a popular choice in recent years.
Two commercial players in whole-transcriptome microwell-sequencing are the CelSee platform and Takara’s

iCell8. CelSee’s Genesis system is a gravity-based technology in which cells are loaded using Poisson distribu-
tion into 30 μm wells [26]. Though still under development, this system aims to generate 30 end data using a

Figure 1. Single-cell RNA sequencing technologies.

Summary of methods for compartmentalising single cells for scRNAseq (top row) and the technologies that use them (bottom row; see also

Table 1). Images adapted from [1,18].
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PCR-based template switching mechanism and to allow imaging and capture of rare cells. Takara’s iCell8 [27]
uses liquid handling to distribute cell suspensions with Poisson distribution across a 5071 nanowell chip. The
large well size on the iCell8 allows cells such as cardiomyocytes to be captured and the system has low magnifi-
cation (4×) fluorescence imaging capability, allowing assessment of doublets, live/dead staining or other fluores-
cent stains and linkage between this image and the Smartseq2 full-length cell transcriptome generated.
However, the number of cells captured is in the range of 1000–1800, rather than the thousands reported for
gravity-fed microwell and droplet technologies. Indeed, in general, there is a trade-off: technologies with lower
cell capture rates (hundreds of cells) often allow full-length transcript sequencing suitable for splice isoform
analysis and the possibility of linking the cell barcode and image of the cell, whereas higher-throughput tech-
nologies (thousands of cells) use end-counting methods and either have no cell imaging capability or when
cells can be imaged, currently it is not possible to link an image to a cell transcriptome. Therefore, the choice
of system for scRNAseq is very much dependent on the cell types used and the data the end user requires.
In addition to gene expression analysis, many of the commercial scRNAseq platforms now offer additional

protocols such as chromatin accessibility (ATAC-seq), V(D)J/T-cell receptor (TCR) profiling of immune cells
[V(D)J recombination occurs in developing lymphocytes, resulting in immunoglobulin and TCR diversity], the
ability to incorporate antibody staining and to capture nuclei rather than cells. The advantage of single-nucleus
RNA sequencing (snRNAseq) [28–34] is that it does not require enzymatic dissociation, so the cell types recov-
ered are more representative of the original tissue and suffer less from transcriptional artefacts. Use of frozen
samples as opposed to the fresh material required by scRNAseq techniques also allows access to archived
material. Lack of cytoplasmic mRNAs does result in lower mRNA content in nuclei than cells and fewer detect-
able genes, but in spite of this it is often possible to identify the same cell types detected in scRNAseq [28,29].
Currently snRNAseq is following a similar progression to scRNAseq; moving from low-throughput formats
[33,34] to massively parallel sequencing (DroNc-seq [29]). Single-nucleus sequencing has thus far been applied
largely to the brain, but larger-scale studies ongoing should demonstrate whether it is effective in a wider range
of tissues.
The next step in the profiling of dissociated single cells and nuclei is likely to be an increase in multi-omics

technologies (reviewed in [35,36]). Already methods exist for profiling genomic DNA and mRNA (G&T-seq)
or transcriptome, ATAC-seq and methylation state together in single cells [37–43]. This offers opportunities to
reconstruct cell lineages by tracking DNA mutations [44] and provides insights into cell state. The use of anti-
bodies conjugated to DNA barcodes that can be readout through sequencing is also increasing and allows pro-
filing of hundreds of proteins across thousands of single cells or nuclei, with paired whole-transcriptome data
[45,46].
Indeed, highly multiplexed proteomics is particularly challenging due to the requirement for good quality,

specific antibodies. However, understanding protein expression is essential given that proteins are the major
biological effector molecules in the cell. Methods such as mass cytometry by time-of-flight (CyTOF) and FACS
allow profiling of dozens of proteins using antibodies labelled with heavy-metals or fluorophores [47,48], but

Table 2. Commercial scRNAseq platforms

Platform Supplier
Cell separation
method

PCR
or IVT?

Library prep
method Uses UMIs?

30, 50 or
full-length data?

Maximum cell
diameter (mM) Throughput

C1 Fluidigm IFCs PCR Template
switching

Protocol
dependent

Full length, 30, 50 25 Low–medium
(10–800 cells)

Chromium 10× Genomics Droplet PCR Template
switching

Y 30 or 50 30–60* High (10 000)

Nadia/Innovate Dolomite Bio Droplet PCR Template
switching

Y 30 40/100* High (10 000)

C-prep Genesis CelSee Nanowells = gravity or
forced

PCR Template
switching

Y 30 30* High (10 000+)

iCell8 Takara Nanowells -
nanodispensing

PCR Template
switching

Y Full-length Unrestricted Medium (1000)

Summary of major commercially-available scRNAseq platforms. PCR, polymerase chain reaction; IVT, in vitro transcription; UMIs, unique molecular identifiers.*Well/droplet
size; must accommodate cell and bead.
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such dissociated methods lose information on subcellular location, which can be critical for gene-product func-
tion. Protein immunostaining of tissue sections addresses this but is low-throughput. Some large-scale atlasing
initiatives are tackling this challenge, such as the Human Protein Atlas [49,50].
One issue for all of the methods discussed above is that they require tissue or sample dissociation. A high-

quality single-cell suspension should have good cell viability, absence of debris and an accurate representation
of the cell types present in the original sample, but in reality, achieving this is often problematic (see technical
challenges of atlasing reviewed in Hon et al. [51,52]). The majority of publications currently use a combination
of mechanical and warm enzyme treatment over a prolonged period, which can itself induce stress-related tran-
scriptional changes [53]. Some protocols aim to overcome this by using enzymes that work at cold tempera-
tures [54,55]. A variety of fixatives or other preservation agents have also been trialled, although the majority of
these were tested on single-cell suspensions post dissociation rather than intact tissue pieces [56–60]. Warm
ischaemic time also creates transcriptional changes [51]; there is evidence that this can be abrogated by rapid
cold storage in hypothermic preservation media [61], but this does not resolve the issues introduced by dissoci-
ation. Therefore, methods to preserve intact specimens that allow the generation of high-quality, transcription-
ally accurate single-cell suspensions, are needed.
A solution is not to dissociate tissues at all. Indeed, understanding the tissue context of cell types is a critical

component of atlasing, as the location is often related to function; tissue dissociation loses that context and can
cause loss of specific cell populations. Small pools of cells from tissue sections can be profiled at whole-
transcriptome level using laser capture microdissection [62]. A promising alternative is that of imaging and/or
sequencing-based spatially resolved approaches. These methods have traditionally been used as validation tools
to demonstrate, for example, the existence of new cell types predicted by scRNAseq. However, they are rapidly
maturing and beginning to reach a scale appropriate for hypothesis-generating cell atlasing themselves.

Spatial technologies: putting single cells in tissue context
One of the most long-standing methods for assessing RNA distribution in tissues is smFISH. DNA probes are
hybridised to thin fresh frozen or fixed tissue sections, usually followed by signal amplification, and individual
RNA molecules read-out by imaging (for a summary of methods see Table 3 and Figure 2). These methods
have the advantage of high sensitivity compared with scRNAseq [78] and excellent spatial resolution, allowing
visualisation of individual cells and even sub-cellular structure, while retaining information on each cell’s pos-
ition within the tissue. SmFISH methods vary in scale considerably, from single-plex or lowly multiplexed
(RNAscope, SABER-FISH, osmFISH, PLISH [63,64,68,69,73,79]) to those measuring hundreds or thousands of
mRNAs through the use of imageable barcodes (MERFISH; in situ sequencing; seqFISH; BaristaSeq [64–66,70–
72,80–82]). Methods are now starting to be developed that aim to deliver whole-transcriptome, spatially
resolved measurement of mRNAs in tissue sections such as RNA SPOTs (a modification of SeqFISH; [72]) and
FISSEQ, which uses in situ imaging-based sequencing of RNA molecules directly [74].
All of these methods require expensive, specialist imaging equipment and can be challenging to implement

due to spectral overlap between fluorophores, the optical diffraction limit of microscopy, and the challenges of
tissue autofluorescence. Methods offering high multiplexing use multiple rounds of staining and imaging: these
tend to be time- and labour-intensive, and require the non-trivial ability to wrangle large image datasets as well
as accurately register both fiducial features such as nuclei and single-molecule spots. Tissues with cells that are
densely packed, such as glandular epithelia of the endometrium or granule layers of the cerebellum, or that
exhibit complex morphologies, such as neurons, compound these challenges. SpaceTx/STARFISH has been set
up to address exactly these issues. Until high-plex methods become more accessible both experimentally and
computationally, lower-plex protocols will remain the most prevalent, and are currently used extensively for
validation of scRNAseq data sets. This is aided by automation of some low-plex protocols such as RNAscope
on slide-staining instruments [83,84], but this requires many tissue sections and is expensive. Although a trade-
off between throughput and sensitivity currently limits the scope, the ability to localise and quantify hundreds
or thousands of mRNA molecules within tissue sections allows precise validation of many cell types and their
locations in parallel; a scale in line with the volume of scRNAseq data generated by atlasing projects.
Commercial systems that deliver this are needed and will have huge potential if the aforementioned challenges
can be overcome.
While use of smFISH for validation of scRNAseq is valuable, most spatial technologies lag behind the whole-

transcriptome interrogation of dissociative methods, a key element behind the power of atlasing in generating
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Table 3. Spatially resolved methods

Protocol Ref Plex Underlying technology
Spatial
resolution Readout

RNAscope [63] 12 Branched DNA/probes.
Non-barcoded

Single cell Imaging

SABER-FISH [64] 1–17+ Primer exchange reaction Single cell Imaging

osmFISH [68] 1–33+ Probes. Non-barcoded,
unamplified, cyclic

Single cell Imaging

PLISH [69] 1–8+ Proximity ligation/RCA Single cell Imaging

MERFISH [66,70] 10 000 Barcoding and sequential
imaging

Single cell Imaging (barcodes)

In situ sequencing [65] 256+ Padlock probes, RCA Single cell Imaging (barcodes)

seqFISH+, RNA SPOTs [71,72] 10 000 Barcoding and sequential
imaging

Single cell Imaging (barcodes)

BaristaSeq [73] 10 000+ Padlock probes, RCA Single cell Imaging (barcodes)

FISSEQ [74] Whole transcriptome RCA; SOLiD sequencing Single cell Sequencing by imaging

Spatial Transcriptomics/
10× Genomics Visium

[75,76] Whole transcriptome Printed oligo-dT spots 100 mM/55 mM NGS

High-Density Spatial
Transcriptomics

[77] Whole transcriptome Oligo-dT beads on slide 2 mM NGS

Slide-seq [67] Whole transcriptome Oligo-dT beads on slide 10 mM NGS

Summary of published methods for assessing transcript localisation in tissue sections. RCA, rolling circle amplification.

Figure 2. Spatially resolved methods for RNA analysis.

RNA molecules may be imaged at single-cell or sub-cellular resolution using low-plex branched DNA methods (RNAScope,

SABER-FISH), or higher-plex sequencing by imaging methods. Among the latter, only FISSEQ allows direct sequencing of

mRNA targets without requiring prior knowledge of the RNA sequence. Other methods (MERFISH, in situ sequencing,

SEQFISH, Barista-seq) require the use of transcript-specific probes. NGS-based methods, which use oligo-dT covalently linked

to glass slides (Spatial Transcriptomics, Visium) or beads (High-Density Spatial Transcriptomics, Slide-seq) give a lower

resolution view of mRNA expression patterns but do not require probe design. Images adapted from [63–67].
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data in a hypothesis-free manner without prior knowledge of cell type markers. Aside from FISSEQ, spatial
imaging methods to date cannot deliver hypothesis-free whole-transcriptome scale data combined with single-
cell resolution. However, whole-transcriptome sequencing-based spatial technologies that do not require such
complicated imaging equipment as smFISH-based approaches are now beginning to emerge.
In 2016, Ståhl et al. [75] published ‘spatial transcriptomics’, a method in which thin fresh-frozen tissue sec-

tions are placed over a grid of 100 μm oligo-dT spots, each spot having a unique barcode. The tissue is stained
with haematoxylin and eosin to assess histology and localise the oligo spots, before being permeabilised and
used to prepare sequencing libraries. The oligo-dT spot barcodes are used to assign each read to its location in
the tissue, producing whole-transcriptome data with spatial resolution. Hundred micrometer resolution is
useful for identifying gene expression differences between gross anatomical structures in tissues. However, for
cell type profiling of complex tissues in which a 100 μm area can cover diverse cell types, it is not sufficient.
Recent commercial systems and academic publications have increased this resolution by reducing feature sizes
to 55 μm (10× Genomics Visium, commercial, [85]) or 2–10 μm (academic, [67,75,77]). RNA diffusion from
the permeabilised cells has been demonstrated to be ∼2 μm [75]. Therefore these technologies, though in their
infancy, are beginning to reach single-cell scale. This opens up the prospect of generating hypothesis-free data
and new cell type prediction directly in situ, where the location of each cell type and its neighbours are known.
Of course, as the size of features on spatial arrays is reduced, the ability to capture mRNAs and therefore

sensitivity, is also reduced. However, these methods do generate data in agreement with scRNAseq.
Lower-throughput smFISH-based methods are more sensitive, localising individual mRNA molecules with sub-
cellular resolution at greater than 90% detection efficiency. Therefore there is clear value in all of these tech-
nologies for atlasing initiatives.
Another technology utilising a next-generation sequencing (NGS) read-out while focusing upon areas of

interest identified according to spatial features is the NanoString GeoMX Digital Spatial Profiler [86]. By per-
mitting the user to select regions of interest according to RNAscope or immunohistochemical staining, the
GeoMX DSP allows interrogation of around 100 proteins or up to 1800 mRNAs within spatially resolved fea-
tures and cell populations (and a whole-transcriptome assay targeting ∼18 000 genes is to be released). Tags
attached to oligonucleotide probes or antibodies are cleaved by highly refined patterns of UV light, directed by
a digital mirror device module with ∼1 μm2 resolution, and collected via a micro-capillary system; following
collection these tags are quantified using the NanoString nCounter platform or NGS. While it currently lacks
single-cell resolution — with a recommended capture of >10 cells per feature for protein detection and 50–200
for RNA — this technology offers great flexibility in choosing these regions, with custom geometric and seg-
mentation algorithm-based selections, in contrast with the strictly organised spots of a Spatial Transcriptomics
slide. Critically, the technology is fully compatible with formalin-fixed paraffin-embedded samples, permitting
analysis of archival disease samples and fixed biopsy material. Two independent studies utilising a NanoString
immuno-oncology marker panel identified novel biomarkers that predict treatment response in melanoma
[87,88].
A very recent development in the automated high-resolution large tissue cell atlasing field is the ReadCoor

RC2, which utilises FISSEQ [74] combined with a stabilising matrix to map single RNA, protein, and DNA
molecules in situ. Current panels of interest comprise ∼250 mRNAs, proteins, or DNA loci, which may be tar-
geted combinatorially, yielding unprecedented multi-macromolecule mapping with three-dimensional single-cell
resolution in a single instrument. The platform is compatible with both fresh and fixed samples up to 30 μm
thick, and therefore shows promise for rich cell atlasing and comprehensive archival disease analysis alike.
One area that is expanding rapidly is technologies that allow detection and quantification of multiple mole-

cules within a tissue, including multi-modal methods. For example, spatial metabolomics uses mass spectrom-
etry to localise metabolites in tissue sections, and comparisons between this and transcriptomic or proteomic
data would be valuable [89]. RNA and protein can be imaged concurrently in situ with some low-throughput
smFISH methods like RNAscope, provided that epitopes survive the smFISH staining procedure. This is useful
for determining the correlation between mRNA and protein expression, in instances where it is not possible to
locate antibodies or design unambiguous probes for all of the markers needed in a multiplexed panel, or
simply for better definition of specific cell types or cell boundaries by using a protein marker combined with
smFISH — membrane-localised proteins make excellent cell segmentation aids. Many commercial platforms
exist for assessing dozens of protein markers together in tissue sections, or RNA or protein separately, but
rarely the two together. Many of the higher-throughput RNA or protein imaging approaches now being devel-
oped are also tackling the technical challenge of imaging set-up, making these techniques more accessible.
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Indeed many systems either incorporate an imaging system directly or are designed with software and micro-
fluidics to automate certain microscope systems, significantly reducing hands-on time.
An ideal goal of atlasing initiatives would be not only to be able to image RNA and/or protein in thin tissue

sections, but also in thicker tissue, with the goal of building 3D maps of large tissue regions or even whole
organs. Significant advances have been made in tissue clearing and thick tissue imaging of proteins and
mRNAs in mouse, such as CLARITY, 3DISCO, STARmap, SHANEL and others [90–93]. Methods are also
developing that both clear tissue and expand it linearly to allow better visualisation of sub-cellular structure
[94,95], or that can shrink large tissue volumes or even entire organisms [96]. Though low-throughput and
challenging to implement, the ability to image protein and/or mRNA in thick tissue sections or even whole
organs is an ideal goal of atlasing as it allows 3D reconstruction of tissues showing functional cell structures
and cell–cell interactions over long distances, such as neuronal processes in the brain. Significantly, the staining
of transparent human embryos and foetuses [97] and whole adult organs [91] has now been achieved.
The past decade has seen a massive technological expansion in single-cell sequencing and spatially resolved

mRNA profiling. This revolution has been driven by the desire to understand the cell types that make up
organisms at the molecular level with a view to better understanding basic biology and delivering translational
research. Many large atlasing initiatives are in progress: what have we learnt from these early-stage ventures?

Cell atlasing: biological insights
One of the first organisms to be ‘atlased’ was the mouse, in two main publications: the Mouse Cell Atlas [1]
and Tabula Muris [2]. Between these two publications over 500 000 cells from 40 adult and foetal mouse
tissues were profiled with multiple single-cell RNA sequencing (scRNAseq) technologies. The Tabula Muris
revealed previously unknown roles for several genes in muscle (Chodl; indicating the presence of chondrocytes
or cells with chondrogenic potential) and pancreas (Neurog3 expression in somatostatin-producing delta cells;
Prss53 specifically in islet beta cells). The Mouse Cell Atlas identified the expansion of secretory alveoli in the
lactating mammary gland and provided evidence of bipotent progenitors in adult murine lung. These publica-
tions also demonstrated tissue-resident mesenchymal and immune cells in several organs; observations recently
extended across the murine lifespan, providing insights into ageing [98].
Other organisms being profiled with the temporal resolution are the malaria parasite Plasmodium berghei, the

nematode worm Caenorhabditis elegans, and the zebrafish Danio rerio. Around 40% of genes in P. berghei cur-
rently have unknown functions, which hampers drug discovery. It is hoped that the Malaria Cell Atlas [3] will
provide insight into the activity of many of these genes by comparison with genes of known function that show
similar developmental expression patterns. In addition to laboratory-based parasites, the Malaria Cell Atlas also
characterised ‘wild’ parasites from infected carriers at single-cell resolution, revealing their life-cycle stages. Two
reports on C. elegans using sci-RNAseq and 10× Genomics droplet scRNAseq profiled over 130 000 cells at differ-
ent stages of development [19,99]. This work identified 27 different cell types including rare neuronal lineages,
and correlations with ChIP-seq data provided insights into cell type specific effects of transcription factor
binding. Assessment of three different developmental time points using scRNAseq and imaging of fluorescent
reporter genes demonstrated lineage convergence in several cell types and showed that many terminally differen-
tiated cell types were generated abruptly only in the last cell division, rather than the smoother, slower differenti-
ation paradigm previously envisaged. In zebrafish, profiling of blood cell lineage differentiation demonstrates a
more gradual transition from multipotent to lineage-restricted cells [100]. This kind of temporal profiling
becomes increasingly challenging as we attempt to study more complex organ systems and organisms. In mice,
this can be accomplished through the use of inducible genetic reporters and techniques such as ‘Pulse-seq’ [101],
but these are not feasible in humans. However, human genetic lineage tracing has now been demonstrated using
mitochondrial DNA mutations, making it feasible to generate gene expression or chromatin conformation data
alongside mitochondrial lineage inferences [44].
The Human Cell Atlas is one of the largest atlasing initiatives, outlined in a white paper in 2017 [102]. This

brings together hundreds of scientists from around the world with the goal of identifying all cell types in the
healthy human body. In addition to adult samples, the Atlas will profile developmental and paediatric samples
[103] and some disease states, particularly cancer. As well as a considerable body of work being completed by
individual laboratories, several co-ordinated initiatives are emerging around specific tissues. For example,
LungMAP [104] and the Human Lung Cell Atlas [105] aim jointly to produce a molecular atlas of the human
lung throughout foetal development, as well as in paediatric [106], and adult/ageing samples. The ‘Cell Census
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Network’, BRAIN initiative and others, aim to profile the brain and nervous system [107]. The Immunological
Genome Project (ImmgenH) will focus on the immune system, while other groups aim to profile epithelial
tissues. These atlases tend to focus heavily on high-throughput single-cell/single-nucleus RNA-sequencing tech-
niques for initial data generation/discovery research, but are increasingly integrating proteomics and epigenetics
as well as spatial sequencing/in situ RNA methods to understand cellular architecture at the molecular level.
Currently, single-cell datasets have been published (or are in pre-print) regarding human lung

[101,104,105,108–112], skin [22,113,114], digestive tract [115,116], female reproductive tissues including pla-
centa [23,117–119], liver [120,121], kidney [122,123], testis [124], developing heart [125], developing brain
cortex [126], developing retina [127], developing thymus [128] and cross-tissue analysis of specific cell types
such as B-cells [129]. The number of human single-cell RNAseq publications is increasing rapidly (Figure 3)
and already these datasets have uncovered interesting new biology.
In all tissues explored, new cell types, subtypes and cell states are being identified. Pulmonary ionocytes,

which express the cystic-fibrosis gene CFTR and significantly contribute to CFTR activity, were identified in
lung airways [110,112], In the decidua, new tissue-resident natural killer cell subtypes, believed to be ‘primed’
to respond to placentation in second and subsequent pregnancies, were discovered [23] and tissue-resident
immune cell populations have also been identified in lung [109], digestive tract [115], and liver [120,121]. Rare
progenitor cell populations are now also being uncovered, such as ‘state 0’ cells in the testis [124], progenitors
in the kidney [123] and rare stem cells in the lung [108]. The single-cell analysis also reveals different cell
states, such as proliferating versus quiescent cells in the lung [109]. These states can be pathogenic, as observed
for mucous ciliated and epithelial cells in asthmatic lower airways [110,112], inflamed cell signatures in chronic
rhinosinusitis [111], and inflammation-related signatures observed in skin epidermis, immune cell populations,
endothelial cells and fibroblasts [22,113].
Cell states and transitions between differentiation stages are particularly important during development.

Pseudotime analysis of single cells, rather than bulk data, lends itself to the identification of more accurate cel-
lular trajectories. Many studies have reconstructed the developmental pathways of tissues such as kidney [123],
heart [125], brain cortex [126] and retina [127]. In adult skin, temporal assessment of spatially and functionally
distinct fibroblast populations demonstrates ‘priming’ of these cells that is lost with age [114]. Furthermore,
comparisons between healthy and diseased tissues can infer the cell type in which the disease originates. For
example, cells of the paediatric cancer Wilms tumour bear resemblance to specific foetal cells, implying aber-
rant early differentiation, while adult renal cell carcinoma has parallels with a subtype of proximal convoluted
tubular cells [122].
On a longer timescale, comparison of cell types from different species can provide insight into evolutionary

changes. Evidence for the origins of some metazoan cell types, systems and genome-regulatory mechanisms,
including a potential primordial neuro-immune system in sponges [130], has been indicated by recent

Figure 3. Increase in single-cell RNA sequencing publications.

Total cumulative number of publications shown as a line, with total new publications per year shown above each data point.

Data taken from PubMed 17/03/2020, using search term ‘single cell RNA sequencing’ in the title, abstract, or text words.
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scRNAseq publications exploring early marine organisms [131–133]. Studies in mice indicate the suitability of
mouse models of disease. For example, Travaglini et al. demonstrate 17 cell types that are either lost or gained
in human compared with mouse lung tissue [109], and in heart several unique features of human versus mouse
development have been identified [125]. These species differences exemplify both the utility of studying ancient
organisms to better understand metazoan evolution and the value of human data for translational research.
Another valuable output of single-cell data is its ability to identify the expression of receptors and signalling

molecules in individual cells, predicting cell–cell interactions and communication, as well as expression of intra-
cellular signalling pathways. In the decidua, hormone expression is critical for cell function, for example,
natural killer cells were identified with distinct chemokine profiles [23,118,119]. Cellular signalling is of course
also critical during development and differentiation. Tools such as CellPhone DB, a database of receptors,
ligands and their interactions, now allows searching of scRNAseq datasets to identify potential interactions [23].
Cell–cell interactions can also be inferred to an extent using imaging methods, demonstrating that cell types

are physically close together. RNA and protein imaging is used extensively for validation of scRNAseq and
snRNAseq data, including identification of new cell types, their locations within tissue architecture and altera-
tions observed in disease. For example, demonstration of distinct layers of perivascular and stromal cells within
the human decidua [23] and loss of excitatory CUX2-expressing projection neurons in upper cortical layers
during multiple sclerosis by multiplexed in situ hybridisation [134]. Several higher-throughput imaging
methods have also been used to study the mouse brain and are now being expanded into human tissue. Eng
et al. [71] used SeqFISH+ to image 10 000 mRNAs in the mouse brain, detecting clear layers and cell types that
correlated well with previously published scRNAseq datasets, and also analysed ligand–receptor pairs in neigh-
bouring cells, demonstrating that gene expression is dependent on tissue context. Mouse hippocampus and
human breast cancers have been profiled with in situ sequencing, the latter demonstrating differential gene
expression within the cancerous compartment and in infiltrating lymphocytes and stroma [65,66,80]. In add-
ition, techniques such as MERFISH allow an analysis of subcellular compartmentalisation of mRNAs [70].
Though these methods are not whole-transcriptome, they are beginning to approach a level where they can be
used to spatially map tissues with little prior knowledge of cell types. Methods such as Spatial Transcriptomics,
which do deliver whole-transcriptome sequencing data but not single-cell resolution, have now been used to
map breast cancer, amyotrophic lateral sclerosis, pancreatic ductal carcinoma and human heart [135–138].
While spatially resolved approaches continue to develop at a rapid rate, it is still true that to date, the vast

majority of atlasing publications focus on scRNAseq or snRNAseq of dissociated tissues to assess the cell types
and states present. These datasets are so vast that initial published analyses can rarely explore them fully; there-
fore, they provide rich resources for future biological evaluation and translational research. Indeed, one of the
challenges is developing the computational tools to explore these datasets (reviewed in Chen et al. [139]), par-
ticularly as single-cell multi-omics approaches advance [35,36]. Given that a cell’s location within tissue is often
critical for its function, spatial localisation of RNA and protein is frequently used to validate scRNAseq and
snRNAseq datasets. The scale of imaging-based methods is now increasing to a point where it can be used to
effectively validate massively parallel single-cell sequencing datasets. As these become commercialised and
easier to run, the use of higher-throughput imaging techniques is likely to increase. Another exciting develop-
ment is unbiased, spatially resolved sequencing methods with, or close to, single-cell resolution. Computational
methods already exist to use scRNAseq data to deconvolute the cell types captured on spatial transcriptomics
and similar platforms. It will be interesting to see if in situ imaging or sequencing methods reach a point where
they are widely used themselves as discovery tools, mirroring the evolution of massively parallel single-cell/
single-nucleus sequencing technologies.

Cell atlasing: potential impact
Cell atlasing technologies have developed at a rapid rate over the last 10 years, with ever-widening areas of
impact. They provide a comprehensive understanding of cell types, states, chromatin organisation, cell signal-
ling networks and gene regulation mechanisms. They expand existing knowledge on how cells are organised
into functional tissues. Knowledge of the molecular profile of every cell type in the human body and its loca-
tion allows us to hypothesise where disease-related genetic variants may act and potential toxic side effects of
new drugs. These data may enable the generation of more detailed, accurate diagnostic tests through knowledge
of panels of cell type markers, their morphology and ‘normal’ spatial location. As atlasing expands to explore
diseases, there is huge potential for identifying dysregulated or pathogenic cell types and states, which can be
targeted with new therapeutics.
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We anticipate continual drops in cost and increases in the sensitivity and breadth of applications of atlasing
technologies. In particular, single-cell multi-omics technologies incorporating assessment of chromatin accessi-
bility, epigenetics, mutational analysis and/or proteomics will expand. An area we expect to develop with par-
ticular speed is the profiling of single cells within the tissue context. As imaging technologies improve and
more genes can be profiled with single-cell resolution, the scale of new data generation is likely to make
another leap forwards, as tissue histology sections may contain hundreds of thousands of cells that can be pro-
filed in parallel. Advances in tissue clearing and compatibility with single-molecule spatial methods for thick
section staining will expand this into the third dimension, and the number of cells assayable into the millions,
giving cell neighbourhoods and anatomical boundaries a whole new depth. Will we even start to see non- or
semi-invasive highly multiplexed spatial atlasing? The ability to observe cells in their true native living context
would be a phenomenal boon in understanding whole organs.
Spatial transcriptomics are likely to be coupled with methods for measuring the activation of cell signalling

cascades, for example by coupling RNA data with detection of (phospho)proteins, which will then allow us to
truly understand the cross-talk between neighbouring cells and interactions with surrounding structures and
revolutionise our understanding of how cell communities make functional tissues. Spatially resolved technology
will advance further, making it technically easier to assess the expression of thousands of RNA molecules (and
other modalities) with single-cell resolution in situ.
Efforts in the Human Cell Atlas to collate and disseminate diverse datasets in an accessible web-browser

format should make it more straightforward for scientists to interrogate these data without a need for in depth
bioinformatics skills, thus expanding the utilisation of the data. Providing easy access to these vast scRNAseq
and imaging datasets will hopefully produce many biologically, and potentially therapeutically, useful insights
which will be functionally validated. These advances will improve our understanding of gene function, allowing

Figure 4. Potential impact of atlasing initiatives.

Organisms for which atlasing projects are in progress. Fields that are likely to be impacted by atlasing initiatives.
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assessment of the effect of knock-out versus wild type organisms with single-cell resolution and determination
of the effect of inhibitors and potential drugs on whole signalling cascades in individual cells. Improvements in
stem cell-derived and organoid models should feed in to this, stimulated by a better understanding of develop-
mental processes. It will also be possible to assess the effects of drugs on organs or cell types with individual
cell resolution. We will begin to understand what makes cell types that are currently hard to differentiate, dif-
ferent, and how that can benefit medicine. For example, understanding the full range of ion channels in differ-
ent neuronal subtypes may help us to better understand pain transmission and how to treat it. We will gain
insights into how our immune system functions, and how this differs throughout the body and changes with
age, to better understand infection and immunity responses. A key translational area within the Human Cell
Atlas is cancer, so we hope that discoveries will be made to allow us to better understand the origins of differ-
ent cancers, their diversity of cell type composition and which cells are the most pathogenic. In short, atlasing
initiatives are still in their infancy, and they have huge potential to impact on basic biology, technology, regen-
erative medicine, drug discovery and health (Figure 4), so the next decade promises many exciting advances.
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