61 research outputs found

    Biosynthesis of Pregnenolone from Cholesterol by Mitochondrial Enzymes of Bovine Adrenal Cortex

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66357/1/j.1432-1033.1978.tb20931.x.pd

    Immuno-transcriptomic profiling of extracranial pediatric solid malignancies.

    Get PDF
    We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 pediatric extracranial solid cancer samples representing 14 diagnoses, and additionally utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, and notably are significantly predictive of survival in osteosarcoma patients. We identify potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer target. Importantly, this work provides a critical framework for immune targeting of extracranial solid tumors using parallel immuno-transcriptomic and -peptidomic approaches

    TGF-β Regulates DNA Methyltransferase Expression in Prostate Cancer, Correlates with Aggressive Capabilities, and Predicts Disease Recurrence

    Get PDF
    DNA methyltransferase (DNMT) is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs). This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP). The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy.We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK) was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer.Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease recurrence after prostatectomy, and may have clinical implications for CaP prognostication and therapy

    Workshop Report for Cancer Research: Defining the Shades of Gy: Utilizing the Biological Consequences of Radiotherapy in the Development of New Treatment Approaches—Meeting Viewpoint

    Get PDF
    The ability to physically target radiotherapy using image-guidance is continually improving with photons and particle therapy that include protons and heavier ions such as carbon. The unit of dose deposited is the gray (Gy); however, particle therapies produce different patterns of ionizations, and there is evidence that the biological effects of radiation depend on dose size, schedule, and type of radiation. This National Cancer Institute (NCI)–sponsored workshop addressed the potential of using radiation-induced biological perturbations in addition to physical dose, Gy, as a transformational approach to quantifying radiation

    A Vision from the New Editor-in-Chief

    No full text

    CCR

    No full text

    The Promise of Antibody–Drug Conjugates

    No full text

    Gene Expression Analysis of Tumor Spheroids Reveals a Role for Suppressed DNA Mismatch Repair in Multicellular Resistance to Alkylating Agents

    No full text
    Drug resistance is a major obstacle in the successful treatment of cancer. Thus, elucidation of the mechanisms responsible is a critical first step in trying to prevent or delay such manifestations of resistance. In this regard, three-dimensional multicellular tumor cell spheroids are intrinsically more resistant to virtually all anticancer cytotoxic drugs than conventional monolayer cultures. We have employed the EMT-6 subline PC5T, which forms highly compact spheroids, and differential display to identify candidate genes whose expression differs between monolayer and spheroids. Approximately 5,000 bands were analyzed, revealing 26 to be differentially expressed. Analysis of EMT-6 tumor variants selected in vivo for acquired resistance to alkylating agents identified eight genes whose expression correlated with drug resistance in tumor spheroids. Four genes (encoding Nop56, the NADH SDAP subunit, and two novel sequences) were found to be down-regulated in EMT-6 spheroids and four (encoding 2-oxoglutarate carrier protein, JTV-1, and two novel sequences) were up-regulated. Analysis of the DNA mismatch repair-associated PMS2 gene, which overlaps at the genomic level with the JTV-1 gene, revealed PMS2 mRNA to be down-regulated in tumor spheroids, which was confirmed at the protein level. Analysis of PMS2(−/−) mouse embryo fibroblasts confirmed a role for PMS2 in sensitivity to cisplatin, and DNA mismatch repair activity was found to be reduced in EMT-6 spheroids compared to monolayers. Dominant negative PMS2 transfection caused increased resistance to cisplatin in EMT-6 and CHO cells. Our results implicate reduced DNA mismatch repair as a determinant factor of reversible multicellular resistance of tumor cells to alkylating agents

    Characteristics of human Ewing/PNET sarcoma models

    No full text
    Ewing/PNET (peripheral neuroepithelioma) tumors are rare aggressive bone sarcomas occurring in young people. Rare-disease clinical trials can require global collaborations and many years. In vivo models that as accurately as possible reflect the clinical disease are helpful in selecting therapeutics with the most promise of positive clinical impact. Human Ewing/PNET sarcoma cell lines developed over the past 45 years are described. Several of these have undergone genetic analysis and have been confirmed to be those of Ewing/PNET sarcoma. The A673 Ewing sarcoma line has proven to be particularly useful in understanding the biology of this disease in the mouse. The chromosomal translocation producing the EWS/FLI1 fusion transcript characterizes clinical Ewing sarcoma. Cell lines that express this genetic profile are confirmed to be those of Ewing sarcoma. The A673 Ewing sarcoma line grows in culture and as a xenograft in immunodeficient mice. The A673 model has been used to study Ewing sarcoma angiogenesis and response to antiangiogenic agents. Many Ewing sarcoma clinical specimens express the cell surface protein endosialin. Several Ewing sarcoma cell lines, including the A673 line, also express cell surface endosialin when grown as subcutaneous tumor nodules and as disseminated disease; thus the A673 is a useful model for the study of endosialin biology and endosialin-directed therapies. With the advent of tools that allow characterization of clinical disease to facilitate optimal treatment, it becomes imperative, especially for rare tumors, to develop preclinical models reflecting disease subsets. Ewing PNET sarcomas are a rare disease where models are available
    • …
    corecore