399 research outputs found

    Simple model for 1/f noise

    Full text link
    We present a simple stochastic mechanism which generates pulse trains exhibiting a power law distribution of the pulse intervals and a 1/fα1/f^\alpha power spectrum over several decades at low frequencies with α\alpha close to one. The essential ingredient of our model is a fluctuating threshold which performs a Brownian motion. Whenever an increasing potential V(t)V(t) hits the threshold, V(t)V(t) is reset to the origin and a pulse is emitted. We show that if V(t)V(t) increases linearly in time, the pulse intervals can be approximated by a random walk with multiplicative noise. Our model agrees with recent experiments in neurobiology and explains the high interpulse interval variability and the occurrence of 1/fα1/f^\alpha noise observed in cortical neurons and earthquake data.Comment: 4 pages, 4 figure

    Geometric approach to nonlinear coherent states using the Higgs model for harmonic oscillator

    Get PDF
    In this paper, we investigate the relation between the curvature of the physical space and the deformation function of the deformed oscillator algebra using non-linear coherent states approach. For this purpose, we study two-dimensional harmonic oscillators on the flat surface and on a sphere by applying the Higgs modell. With the use of their algebras, we show that the two-dimensional oscillator algebra on a surface can be considered as a deformed one-dimensional oscillator algebra where the effect of the curvature of the surface is appeared as a deformation function. We also show that the curvature of the physical space plays the role of deformation parameter. Then we construct the associated coherent states on the flat surface and on a sphere and compare their quantum statistical properties, including quadrature squeezing and antibunching effect.Comment: 12 pages, 7 figs. To be appeared in J. Phys.

    From quantum cellular automata to quantum lattice gases

    Get PDF
    A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, in this paper we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one parameter family of evolution rules which are best interpreted as those for a one particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second of which, to multiple interacting particles, is the correct definition of a quantum lattice gas.Comment: 22 pages, plain TeX, 9 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages); minor typographical corrections and journal reference adde

    Quantum Langevin equations for semiconductor light-emitting devices and the photon statistics at a low-injection level

    Full text link
    From the microscopic quantum Langevin equations (QLEs) we derive the effective semiconductor QLEs and the associated noise correlations which are valid at a low-injection level and in real devices. Applying the semiconductor QLEs to semiconductor light-emitting devices (LEDs), we obtain a new formula for the Fano factor of photons which gives the photon-number statistics as a function of the pump statistics and several parameters of LEDs. Key ingredients are non-radiative processes, carrier-number dependence of the radiative and non-radiative lifetimes, and multimodeness of LEDs. The formula is applicable to the actual cases where the quantum efficiency η\eta differs from the differential quantum efficiency ηd\eta_{d}, whereas previous theories implicitly assumed η=ηd\eta = \eta_{d}. It is also applicable to the cases when photons in each mode of the cavity are emitted and/or detected inhomogeneously. When ηd<η\eta_{d} < \eta at a running point, in particular, our formula predicts that even a Poissonian pump can produce sub-Poissonian light. This mechanism for generation of sub-Poissonian light is completely different from those of previous theories, which assumed sub-Poissonian statistics for the current injected into the active layers of LEDs. Our results agree with recent experiments. We also discuss frequency dependence of the photon statistics.Comment: 10 pages, 8 figure

    One-Way Entangled-Photon Autocompensating Quantum Cryptography

    Full text link
    A new quantum cryptography implementation is presented that combines one-way operation with an autocompensating feature that has hitherto only been available in implementations that require the signal to make a round trip between the users. Using the concept of advanced waves, it is shown that this new implementation is related to the round-trip implementations in the same way that Ekert's two-particle scheme is related to the original one-particle scheme of Bennett and Brassard. The practical advantages and disadvantages of the proposed implementation are discussed in the context of existing schemes.Comment: 5 pages, 1 figure; Minor edits--conclusions unchanged; accepted for publication in Physical Review

    Multi-Parameter Entanglement in Femtosecond Parametric Down-Conversion

    Get PDF
    A theory of spontaneous parametric down-conversion, which gives rise to a quantum state that is entangled in multiple parameters, such as three-dimensional wavevector and polarization, allows us to understand the unusual characteristics of fourth-order quantum interference in many experiments, including ultrafast type-II parametric down-conversion, the specific example illustrated in this paper. The comprehensive approach provided here permits the engineering of quantum states suitable for quantum information schemes and new quantum technologies.Comment: to appear in Physical Review

    Two-Bit Gates are Universal for Quantum Computation

    Full text link
    A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of three-bit gates, by analogy to the universality of the Toffoli three-bit gate of classical reversible computing. Two-bit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A ``gearbox quantum computer'' proposed here, based on the principles of atomic force microscopy, would permit the operation of such two-bit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on Einstein-Podolsky-Rosen states and related entangled quantum states.Comment: 21 pages, REVTeX 3.0, two .ps figures available from author upon reques

    Role of entanglement in two-photon imaging

    Get PDF
    The use of entangled photons in an imaging system can exhibit effects that cannot be mimicked by any other two-photon source, whatever the strength of the correlations between the two photons. We consider a two-photon imaging system in which one photon is used to probe a remote (transmissive or scattering) object, while the other serves as a reference. We discuss the role of entanglement versus correlation in such a setting, and demonstrate that entanglement is a prerequisite for achieving distributed quantum imaging.Comment: 15 pages, 2 figure

    Dynamics, correlations and phases of the micromaser

    Get PDF
    The micromaser possesses a variety of dynamical phase transitions parametrized by the flux of atoms and the time-of-flight of the atom within the cavity. We discuss how these phases may be revealed to an observer outside the cavity using the long-time correlation length in the atomic beam. Some of the phase transitions are not reflected in the average excitation level of the outgoing atom, which is the commonly used observable. The correlation length is directly related to the leading eigenvalue of the time evolution operator, which we study in order to elucidate the phase structure. We find that as a function of the time-of-flight the transition from the thermal to the maser phase is characterized by a sharp peak in the correlation length. For longer times-of-flight there is a transition to a phase where the correlation length grows exponentially with the flux. We present a detailed numerical and analytical treatment of the different phases and discuss the physics behind them.Comment: 60 pages, 18 figure files, Latex + \special{} for the figures, (some redundant figures are eliminated and others are changed

    Biphoton focusing for two-photon excitation

    Full text link
    We study two-photon excitation using biphotons generated via the process of spontaneous parametric down-conversion in a nonlinear crystal. We show that the focusing of these biphotons yields an excitation distribution that is essentially the same as the distribution of one-photon excitation at the pump wavelength. We also demonstrate that biphoton excitation in the image region yields a distribution whose axial width is approximately that of the crystal thickness and whose transverse width is that of the pump at the input to the crystal.Comment: Accepted for publication in Physical Review
    corecore