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The micromaser possesses a variety of dynamical phase transitions parametrized by the flux of atoms and the
time of flight of the atom within the cavity. We discuss how these phases may be revealed to an observer
outside the cavity using the long-time correlation length in the atomic beam. Some of the phase transitions are
not reflected in the average excitation level of the outgoing atom, which is the commonly used observable. The
correlation length is directly related to the leading eigenvalue of the time evolution operator, which we study
in order to elucidate the phase structure. We find that as a function of the time of flight the transition from the
thermal to the maser phase is characterized by a sharp peak in the correlation length. For longer times of flight
there is a transition to a phase where the correlation length grows exponentially with the flux. We present a
detailed numerical and analytical treatment of the different phases and discuss the physics behind them.
[S1050-294®@6)06010-9

PACS numbd(s): 84.40.1k, 42.50.Dv

[. INTRODUCTION relation to the various phases of the micromaser system.
Fluctuations in the number of atoms in the lower maser level
The highly idealized physical system of a single two-levelfor a fixed transit timeris known to be related to the photon-
atom in a superconducting cavity, interacting with a quanumber statistics[27—-30. The experimental results of
tized single-mode electromagnetic field, has been experime31, 53 are clearly consistent with the appearance of non-
tally realized in the micromasdfl—5] and microlaser sys- classical, sub-Poissonian statistics of the radiation field, and
tems [6]. Details and references to the literature can beexhibit the intricate correlation between the atomic beam and
found, in e.g., the review)—13]. In the absence of dissipa- the quantum state of the cavity. Related work on character-
tion (and in the rotating wave approximatiothe two-level istic statistical properties of the beam of atoms emerging
atom and its interaction with the radiation field are well de-from the micromaser cavity may be found in R€f32-34.
scribed by the Jaynes-CummingdC) Hamiltonian [14]. The paper is organized as follows. In Sec. Il we discuss
Since this model is exactly solvable it has played an importhe standard theoretical framework for the micromaser and
tant role in the development of modern quantum opficsa  introduce some notation. A general discussion of long-time
recent account see, e.g., Reff$2,13). The JC model pre- correlations is given in Sec. lll, where we also determine the
dicts nonclassical phenomena, such as revivals of the initiggorrelation length numerically. Before entering the analytic
excited state of the atorfil5—20, experimental signs of investigation of the phase structure we introduce some useful
which have been reportd@1]. concepts in Sec. IV and discuss the eigenvalue problem for
Correlation phenomena are important ingredients in théhe correlation length. The heart of the paper lies in Sec. V,
experimental and theoretical investigation of physical syswhere details of the different phases are analyzed. In Sec. VI,
tems. Intensity correlations of ligisee, e.g[54]) were used  Wwe study effects related to the finite spread in atomic veloci-
by Hanbury-Brown and Twis22] as a tool to determine the ties. The phase boundaries are defined in the limit of an
angular diameter of distant stars. The quantum theory of ininfinite flux of atoms, but there are several interesting effects
tensity correlations of light was later developed by Glauberelated to finite fluxes as well. We discuss these issues in
[23]. These methods have a wide range of physical applicasec. VII. Finally we summarize our results in Sec. VIII.
tions including investigation of the space-time evolution of
high-energy particle and nuclei interactiof#4,25. In the
case of the micromaser we have recently suggd&eldthat
correlation measurements on atoms leaving the micromaser In the micromaser a beam of excited atoms is sent through
system can be used to infer properties of the quantum state af cavity and each atom interacts with the cavity during a
the radiation field in the cavity. well-defined transit time-. The theory of the micromaser has
In this paper we present a detailed account of the role obeen developed 27,28, and in this section we briefly
long-time correlations in the outgoing atomic beam and theireview the standard theory, generally following the notation
of that paper. We assume that excited atoms are injected into
the cavity at an average raiand that the typical decay rate

Il. BASIC MICROMASER THEORY
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number of photons stored in a high-quality cavity. We shall Denoting the probability of findingn photons in the cav-

assume that the timeduring which the atom interacts with ity by p,, we find the conditional probability that an excited

the cavity is so small that effectively only one atom is foundatom decays to the ground state in the cavity to be

in the cavity at any time, i.eR7<1. A further simplification .

is introduced by assuming that the cavity decay timg %/

much longer than the interaction time, i.e:r<1, so that P(_):<qn+1>:n§=:0 Gn+1Pn-

damping effects may be ignored while the atom passes

through the cavity. This point is further elucidated in Appen-|t is this sum over the incommensurable frequengigsthat

dix A. In the typical experiment of Ref31] these quantities is the cause of some of the most important properties of the

are given the valuedl=10, R7=0.0025, andyr=0.000 25.  micromaser, such as quantum collapse and revigals, e.g.,
Refs.[36—38). These effects are most easily displayed in the

(2.9

A. The Jaynes-Cummings model case that the cavity field is coherent with Poisson distribution
The electromagnetic interaction between a two-level atom (ny"
with level separatiomw, and a single mode with frequenay p,= ol e (M, (2.5

of the radiation field in a cavity is described, in the rotating

wave approximation, by the Jaynes-Cummings Hamiltonian, the more realistic case, where the changes of the cavity
[14] field due to the passing atoms is taken into account, a com-
2.1) plicated statistical state of the cavity arig@3,39-42. It is

H=wa*a+3 +g(ac,+a*o_), . . ; , o
@ 200021 9(a0 s 7-) the details of this state that are investigated in this paper.

where the coupling constangt is proportional to the dipole

matrix element of the atomic transitidriWe use the Pauli B. Mixed states

matrices to describe the two-level atom and the notation The above formalism is direcﬂy app|icab|e when the atom
o.=(0oy*ioy)/2. Forg=0 the atom-plus-field statg8,s)  and the radiation field are both in pure states initially. In
are characterized by the quantum number0,1, ... of the  general the statistical state of the system is described by an
oscillator ands== for the atomic levelgwith — denoting injtial density matrixp, which evolves according to the usual
the ground staje At resonancew=wy the levelsn—1,+)  ryule p—p(t) =exp(=iHt)p exp(Ht). If we disregard, for the
and [n,—) are degenerate fon=1 (excepting the ground moment, the decay of the cavity field due to interactions with
staten=0), but this degeneracy is lifted by the interaction. the environment, the evolution is governed by the JC Hamil-
For arbitrary couplingy and detuning parametéw=wo—®  tonian in Eq.(2.1). It is natural to assume that the atom and
the system reduces to &2 eigenvalue problem, which may the radiation field of the cavity initially are completely un-
be trivially solved. The result is that two new levels arecorrelated so that the initial density matrix factorizes in a
formed as superpositions of the previously degenerate onegvity part and a product df atoms as

with a separation in energl,_,  —E, _= JAw?+4g7n.

The system performs Rabi oscillations with this frequency P=pcO®pp,®pp,® - ®pp, - (2.6
between the original, unperturbed states with transition prob-
abilities[14] When the first atond\; has passed through the cavity, part of
_ this factorizability is destroyed by the interaction and the
[(n,—|e"™7n,—)[P=1—-q.(7), state has become
[(n—1,+[e”™7|n, = )P=qn(7), p(T)=pca(T)®pa,@ ®pp,. 2.7
[(n,+]e 7N, + )= 1—qps 1(7) The explicit form of the cavity-plus-atom entangled state
' ' " ' pc.a,(7) is analyzed in AppendiA. After the interaction,
[(n+1,—]e ™M7n, +)P=qns1(7). (2.2  the cavity decays, more atoms pass through, and the state
becomes more and more entangled. If we decide never to
These are all expressed in terms of measure the state of atoms,...,A; with i<k, we should

calculate the trace over the corresponding states and only the

g°n _ po component remains. Since the time evolution is linear,

()= —7—, sif(7Vg?n+;Aw?).  (2.3)  each of the components in E(R.7) evolves independently,

g'ntzle and it does not matter when we calculate the trace. We can
do it after each atom has passed the cavity, or at the end of
Notice that forAw=0 we haveq,=sin’(g7y/n). Most of the  the experiment. For this we do not even have to assume that
following discussion will be limited to this case. the atoms are noninteracting after they leave the cavity, even

though this simplifies the time evolution. If we do perform a

measurement of the state of an intermediate agma cor-

This coupling constant turns out to be identical to the single-relation can be observed between that result and a measure-
photon Rabi frequency for the case of vanishing detuning, i.e.ment of atomA,, but the statistics of the unconditional mea-
g=Q. There is actually some confusion in the literature about whasurement oA, is not affected by a measurement/Ayf. In a
is called the Rabi frequendy85]. With our definition, the energy real experiment also the efficiency of the measuring appara-
separation between the shifted states at resonand@. is 2 tus should be taken into account when using the measured
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results from atom#\,,... A, to predict the probability of the C. The lossless cavity
outcome of a measurementAf (see Ref[32] for a detailed The above discrete master equati@l0 describes the

investigation of this case pumping of a lossless cavity with a beam of atoms. Aker

As a generic case let us assume that the initial state of thg, .« nave passed through the cavity, its state has become

atom is a diagonal mixture of excited and unexcited states M¥p. In order to see whether this process may reach statis-

0 tical equilibrium fork—oo we write Eq.(2.10 in the form
a

0 bl (28 Pa(7)=Pn+Jns 1= dn, (2.13

PA=

] whereJ,= —aq,p,_1+ba,p, . In statistical equilibrium we

preparation and observation are diagonal in the atomic stategg, only be zero sincg,, and thereford, has to vanish for
it may now be seen from the transition elements in @®2) . It follows that this can only be the case farb, i.e.,
that the time evolution of the cavity density matrix does not g 5 There must thus be fewer than 50% excited atoms in
mix different diagonals of this matrix. Each diagonal SO tOthe beam, otherwise the lossless Cavity blows u[a<[‘D'5’
speak “lives its own life” with respect to dynamics. This the cavity will reach an equilibrium distribution of the form
implies that if the initial cavity density matrix is diagonal, of g5 ‘thermal distribution for an oscillator Pn
i.e., of the form =(1—a/b)(a/b)". The statistical equilibrium may be shown
to be stable, i.e., that all nontrivial eigenvalues of the matrix
- M are real and smaller than 1.
pc= 2, Paln)(nl, 2.9
D. The dissipative cavity

with p,=0 andX,_,p,=1, then it stays diagonal during the A single oscillator interacting with an environment having
interaction between atom and cavity and may always be dea huge number of degrees of freedom, for example a heat
scribed by a probability distributiop,,(t). In fact, we easily bath, dissipates energy according to the well-known damping
find that after the interaction we have formula (see, for exampld46,47)

Pn(7)=adn(7)Pn—1+ 00+ 1(7)Pn+1 dstCZi[pc ,wa*a]— ; v(np+1)

+[1-adn1(7)—bdy(7)]1pn, (2.10
X(a*apc+pca*a—2apca*)
where the first term is the probability of decay for the excited 1
atomic state, the second the probability of excitation for the —35 yny(aa* pc+pcaa* —2a*pca), (2.19
atomic ground state, and the third is the probability that the
atom is left unchanged by the interaction. It is convenient t

Qvheren, is the average environment occupation number at
write this in matrix form[34] e 9 P

the oscillator frequency ang is the decay constant. This
evolution also conserves diagonality, so we have for any

p(7)=M(7)p, (21D diagonal cavity state
with a transition matrixM =M (+)+M(—) composed of 1dp,
two parts, representing that the outgoing atom is either in the ; ar —(np+1)[npy—(n+1)ppn1]
excited statg+) or in the ground staté—). Explicitly we
have _nb[(n+1)pn_npnfl]’ (2-13

which of course conserves probability. The right-hand side
may as for EqQ.(2.13 be written asJ,,;—J, with
J,=(np+1)np,—nynp,_; and the same arguments as
M(=)am=a0n0nm+1+b(1=0n)Shm- (212 above lead to a thermal equilibrium distribution with

M(+ )nm: bqn+15n+1,m+ a(1l- qn+1) 5n,mv

n

(2.19

Notice that these formulas are completely classical and may 1 Ny
be simulated with a standard Markov process. The statistical Pn= 1+n, | 14n,
properties are not quantum mechanical as long as the incom-
ing atoms have a diagonal density matrix and we only mea-
sure elements in the diagonal. The only quantum mechanical
feature at this stage is the discreteness of the photon states, We now take into account both pumping and damping.
which has important consequences for the correlation lengthet the next atom arrive in the cavity after a tinfe>r.
(see Sec. Il ¢ If the atomic density matrix has off-diagonal During this interval the cavity damping is described by Eq.
elements, the above formalism breaks down. The reduce®.15, which we shall write in the form

cavity density matrix will then also develop off-diagonal el-

ements, even if initially it is diagonal. We shall not go fur- @_ vy 2.17
ther into this question heisee, for example, Refs43-45). dt V<P '

E. The discrete master equation
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wherel . is the cavity decay matrix from above
35Rb 63ps/a ~ 61d5/2

(Le)am= Mo+ D[NGy = (N+1) 81 1n] o moswer
+np[(N+1) 8y m—NSn—1m]- (2.18 ol m=015
The statistical state of the cavity when the next atom arrives -t
is thus given by re ®
p(T)=e""<"M(7)p. (2.19 o

10

In using the full intervalT and notT—r we allow for the
decay of the cavity in the interaction time, although this de-
cay is not properly included with the atomic interactidor
a correct treatment see Appendiy. A

This would be the master equation describing the evolu-
tion of the cavity if the atoms in the beam arrived with defi- 5 ¢ Comparison of theorysolid curve and Monte Carlo
nite and known mtervals..More cpmmonly, the tlme mtervals(MC) data (dotg for the correlation lengttRé (sample size 10
T between atoms are Poisson distributed accordif0)  atomg. The dotted and dashed curves correspond to subleading
=exp(— RT)RdTwith an average time intervalR/between  eigenvaluegx; 5 of the matrixS. The parameters are those of the

them. Averaging the exponential in E®.19 we get experiment in Ref[31].
(P(T))r=Sp, (2.20 long-time correlations, which do not impose the same strict
where experimental conditions. These correlations turn out to have
a surprisingly rich structurésee Fig. 1 and reflect global
1 properties of the photon distribution. In this section we in-
S:m M, (22D troduce the concept of long-time correlations and present

two ways of calculating them numerically. In the following
and N=R/vy is the dimensionless pumping rate already in-sections we study the analytic properties of these correlations
troduced. and elucidate their relation to the dynamical phase structure,
Implicit in the above consideration is the lack of knowl- especially those aspects that are poorly seen in the single-
edge of the actual value of the atomic state after the interadime observables or short-time correlations.
tion. If we know that the state of the atomds- + after the
interaction, then the average operator that transforms the

. L A. Atomic beam observables
cavity state is instead

Let us imagine that we know the state of all the atoms as
S(s)=(1+Lc/N)"*M(s), (2.22  they enter the cavity, for example, that they are all excited,
and that we are able to determine the state of each atom as it
_ exits from the cavity. We shall assume that the initial beam
Repeating the process for a sequencekainobserved g giaistically stationary, described by the density matrix
atoms we find that the initial probability distributiqnbe- (2 g) and that we have obtained an experimental record of
comesS'p. In the general case this Markov process con-he exit states of all the atoms after the cavity has reached
verges towards a statistical equilibrium state satish8W  gatistical equilibrium with the beam. The effect of nonper-
=p, which has the solutiof27,44 for n=1 fect measuring efficiency has been considered in several pa-
pers[32—34 but we ignore that complication since it is a

with M(s) given by Eq.(2.12.

n
— npm+Nagy purely experimental problem. From this record we may esti-
Pn=Po : (2.23 ” 4
m=1 (1+np)m+Nbgy, mate a humber of quantities, for example, the probability of
) ) . finding the atom in a state=+ after the interaction, where
The overall constanp, is determined by ,_op,=1. we chooset to represent the excited state andhe ground
state. The probability may be expressed in the matrix form
Il. CORRELATIONS

_,,0" 0
. . . . . . =u" M , )
After studying stationary single-time properties of the mi- Pe)=u"M(s)p @D

cromaser, such as the average photon number in the cavity o 0. o

and the average excitation of the outgoing atoms, we now/hereM(s) is given by Eq.(2_.120) andp” is the equilibrium
proceed to dynamical properties. Correlations between ouflistribution(2.23. The quantity s a vector with all entries
going atoms are not only determined by the equilibrium dis-dual to 1,up=1, and represents the sum over all possible
tribution in the cavity but also by its approach to this equi-final states of the cavity. In Fig. 2 we have compared the
librium. Short-time correlations, such as the correlation®€havior ofP(+) with some characteristic experiments.
between two consecutive atorf80,34], are difficult to de- SinceP(+)+P(—)=1 it is sufficient to measure the aver-
termine experimentally, because they require efficient obse/29€ Spin value

vation of the states of atoms emerging from the cavity in

rapid succession. We propose instead to study and measure (s)=P(+)—P(—). (3.2



54 DYNAMICS, CORRELATIONS, AND PHASES OF TH .. . . 5175

o Experiment SS9 = $1S,Pu(Sy,S

Equilibrium: ny =2, N=1 < >k 522 12 k( L 2)
---- Thermal: ny =2 1022

08 - -~ Poisson: {n) = 2.5

=P+ )P, )
_Pk(+!_)_7)k(_!+)

06

P WP o =1—4P(+,-). 3.9
04 3 . . . H
' \ From this we derive the properly normalized correlation
NS function
02 SRb 63pa/2 < 61ds)s T 5
R =500s", ny =2, 7 = 500 5~ A:M (3.5
00 - R 7k 1_<S>2 , .
0 50 100 150 200
7 il which satisfies-1<yf<1.
10 it ' At large times, wherk—oo, the correlation function is in
* Equilibrium: ny =2, N =6 general expected to decay exponentially, and we define the
0l - EE;’;?,?}}Z;:%S | atomic beam correlation length, by the asymptotic behav-
- . ior for largek=Rt,
» s, ol - | o
i ~exp — = |. .
P(+) 7k Réa

Here we have scaled witR, the average number of atoms

\ passing the cavity per unit of time, so th@t is the typical
$5Rb 63pay — 61ds/2 ] Iengt? of time that the cavity remembers previous pumping
events.

02

R=3000s"1,n,=2,v=>500s"
0.0 L

0 50 u';[o ] 150 20 B. Cavity observables
LT les . .
In the context of the micromaser cavity, one relevant ob-

FIG. 2. Comparison ofP(+)=1-P(—)=1—(q,+1) With ex-  servable is the instantaneous number of photongrom
perimental data of Ref21] for various probability distributions. which we may form the averag@e) and correlations in time.
The Poisson distribution is defined in BQ.5), the thermal in Eq.  The quantum state of light in the cavity is often characterized

(2.16), and the micromaser equilibrium distribution in E8.23. In  py the Fano-Mandel quality factg#8], which is related to
the upper figureNl=R/y=1) the thermal distribution agrees well the fluctuations of through
with the data and in the lowdiN=6) the Poisson distribution fits

the data best. It is curious that the data systematically seem to (n?)—(n)?
deviate from the micromaser equilibrium distribution in the lower Qf:T_l- (3.7
figure.

This quantity vanishes for coherefPoisson light and is
Sinces?=1 this quantity also determines the variance to be0Sitive for classical light. .
<32>—<s>2=1—<s>2. In eqwhbnum there is a relation betvyeen the average
photon occupation number and the spin average in the
atomic beam, which is trivial to derive from the equilibrium
distribution

Correspondingly, we may define the joint probability for
observing the states of two atonss,followed bys,, with k
unobserved atoms between them,

1-(s)

(ny=u®"Ap®=n,+NP(—)=n,+N >

(3.9

.

Pu(s1,52)=u® S(s,)SS(s1)p°, 3.3 .. , _ _
wheren is a diagonal matrix representing the quantum num-
ber n. A similar but more uncertain relation between the

whereS andS(s) are defined in Eqe2.2) and(2.22. The Mandel quality factor and fluctuations in the atomic beam

joint probability of finding two consecutive excited outcom- MaY also be derivef29].
ing atoms,P,(+,+), was calculated ifi30]. It is worth no- The covariance between the values of the photon occupa-

ticing that sinceS=S(+)+S(—) and SP=p° we have gﬁlr;rr:ubr;beﬂ( atoms apart in equilibrium is easily seen to be
S Pu(S1,5,) =P(s,). Since we also have® L=u® (M

! . . . OT OT — OT"SkA 0 (3 9)
—-1)=0 we find likewise that u®S=u® so that (nn)=u” nSnp”, -

2s,P(81,82) =P(s1). Combining these relations we derive 44 again a normalized correlation function may be defined
that P, (+,—)="P(—,+), as expected. Due to these relations )

there is essentially only one two-point function, namely, the c_(””)k—<n> (3.10
“spin-spin” covariance function YTy —(ny2 - '
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ol problems in extracting the correlation lengths from real data.
Rb 63ps/y — 61ds),
R=505" , . .
K - :3155 D. Numerical calculation of correlation lengths
-1 =5g1 . - . . . . . .
\ y=es The micromaser equilibrium distribution is the solution of
: ., Sp=p, whereS is the one-atom propagation matti.21),
o \“W.,_,A so thatp? is an eigenvector o8 from the right with eigen-
o810 7 Cewstiy, - value kp=1. The corresponding eigenvector from the left is
¢ . veo wiend . . . . T
S e T e R u® and normalization of probabilities is expressedudsp®
PL LR NN e e e =1. The general eigenvalue problem concerns solutions to
et TUn TN e T Sp=«p from the right andu"S=«u' from the left. It is
A C shown below that the eigenvalues are nondegenerate, which
1 , implies that there exists a spectral resolution of the form
0 50 100 150 200
k=~ Rt

_ 117
= A
FIG. 3. Monte Carlo datgwith 10° simulated atomsfor the S |:Eo [P (312

correlation as a function of the separatios Rt between the atoms
in the beam forr=25 us (lower data pointsand 7=50 us (upper  with eigenvaluesq and eigenvectorg' andu' from right
data points In the latter case the exponential decay at large times isind left, respectively. The long-time behavior of the correla-

C|eal’|y Visible, whereas it is hidden in the noise in the former. Theuon functlon |S governed by the next_to_lead|ng e|genva|ue
parameters are those of the experiment described in[BEf. k<1, and we see that

The cavity correlation lengtl. is defined by 1
Ré=— e (3.13
1

. (3.11

k
C~exp< -
Yk Rgc

Since the same power of the matfs involved, both cor-

The eigenvalues are determined by the characteristic
equation d€S—«}=0, which may be solved numerically.
) ! ] This procedure is, however, not well defined for the infinite-
relation lengths are determined by the same eigenvalue, anf,ansional matrixS, and in order to evaluate the determi-

the two correlation lengths are therefore identical,,ont e have truncated the matrix to a large and finite-size
éa=&c=¢, and we shall no longer distinguish between , i ith typical K=100. The explicit form ofS in Eq.
them. (2.2)) is used, which reduces the problem to the calculation
of the determinant for a Jacobi matrix. Such a matrix van-
C. Monte Carlo determination of correlation lengths ishes outside the main diagonal and the two subleading di-
Since the statistical behavior of the micromaser is a clasdgonals on each side. It is shown in Sec. IV C that the eigen-
sical Markov process it is possible to simulate it by means ovalues found from this equation are indeed nondegenerate,
Monte Carlo methods using the cavity occupation number real, positive, and less than unity.
as stochastic variable. The next-to-leading eigenvalue is shown in Fig. 1 and
A sequence of excited atoms is generated at Poissorfigrees very well wi_th. the Monte Carlo calculations. This
distributed times and allowed to act @enaccording to the f|gure.shows a surprising amount of structure and part of_the
probabilities given by E¢2.2). In these simulations we have effor't in the following will be to understand this structure in
for simplicity chosera=1 andb=0. After the interaction the detail. _ _ _
cavity is allowed to decay during the waiting time until the  Itis possible to derive an exact sum rule for the reciprocal
next atom arrives. The action of this process on the cavitgigenvaluegsee Appendix B which yields the approximate
variablen is simulated by means of the transition probabili- €Xpression
ties read off from the dissipative master equatigrilb us-
ing a suitably small time stegt. The states of the atoms in =1+ Pa(1-Pn)  1-[ny/(1+n,)]"
the beam are determined by the pumping transitions and the T & (A +ny)np, n ’
atomic correlation function may be determined from this se- (3.19
guence of spin values by making suitable averages after the
system has reached equilibrium. Finally the correlationwhen the subdominant eigenvalues may be ignored. plere
lengths may be extracted numerically from the Monte Carlds the equilibrium distribution Eq(2.23 andP,=X ”m;loPm
data. is the cumulative probability. In Fig. 4 we compare the exact
This extraction is, however, limited by noise due to thenumerical calculation and the result of the sum rule, which is
finite sample size which in our simulation is®8toms. In much less time consuming to compute.
regions where the correlation length is large, it is fairly easy
to extract it by_ fitting to t_he exponen.tialtl decay, whgreas it is IV. ANALYTIC PRELIMINARIES
more difficult in the regions where it is smdkee Fig. 3.
This accounts for the differences between the exact numeri- In order to tackle the task of determining the phase struc-
cal calculations and the Monte Carlo data in Fig. 1. It isture in the micromaser we need to develop some mathemati-
expected that real experiments will face the same type ofal tools. The dynamics can be formulated in two different

©
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i 1 dby +1 +1

85 3/2 < 5/2 — 7 =—(n n —(n

.l 312)5%35—/1 61ds, 5 dt (Np+1)[npy—( )Pn+1]
m = 0.15

=557 —np[(N+1)py—npn_1]—N[(agy1+bd,)py

1 _aqnpnfl_bqn+lpn+1]- (4-4)
Re
The equilibrium distribution may be found by the same
81 technique as before, writing the right-hand side of Eg4)
asJd,1—J, with
A S 3n=L(np+1)n+Nbay]py— (Nen+ Nac)py 1,
0 20 40 eo[ﬂ] £ 100 (45)

FIG. 4. Comparison of the sum in E¢3.14 over reciprocal ~and settingd,=0 for all n. The equilibrium distribution is
eigenvaluegdotted curvgwith numerically determined correlation  Clearly given by the same expressi@?23 as in the discrete
length (solid curve for the same parameters as in Fig. 1. The dif- Case.
ference between the curves is entirely due to the subdominant ei-
genvalues that have not been taken into account here. . .

B. Relation to the discrete case

ways which are equivalent in the large flux limit. Both are Even if the discrete and continuous formulations have the

related to Jacobi matrices describing the stochastic process@Me equilibrium distribution, there is a difference in the
Many characteristic features of the correlation length are redynamical behavior of the wo cases. In the d|scret§1case the
lated to scaling properties fod—, and require a detailed P2SIC propagation matrix i§’, whereS=(1+Lc/N) "M,
analysis of the continuum limit. Here we introduce some ofVhereas it is exp-yLt) in the continuous case. For high

the concepts that are used in the main analysis in Sec. V. Pumping rateN we expect the two formalisms to coincide,
when we identifyk=Rt. For the long-time behavior of the

correlation functions this implies that the next-to-leading ei-
A. Continuous master equation genvaluesk; of S and \; of L must be related by

When the atoms have Poisson-distributed arrival times iil/f_? 7)\1:—|:\1r|IUK1i . h . I b
is possible to formulate the problem as a differential equatior|1 0 Erovi IS, 1€t us compare the two eigenvalue prob-
[44]. Each atom has the same probabilRgt of arriving in  '€MS- For the continuous case we have
an infinitesimal time intervaddt. Provided the interaction

: : ; o . Lc—N(M—=1)]p=Axp, 4.6
with the cavity takes less time than this interval, ie<dt, [Le=N Jp=Ap 49
we may consider the transition to be instantaneous and write

the transition matrix aRdt{(M —1) so that we get whereas in the discrete case we may rewsife= xp to be-
come
LI L 4.1) N 1
—==—yLcp+R(M—1)p=—1Lp, :
dt (LC—;(M—lﬁp:N(;—qp. 4.7

whereL=L.—N(M—1). This equation obviously has the Let a solution to the continuous case peN) with eigen-
solution valueA(N), making explicit the dependence bh It is then

obvious thatp(N/«) is a solution to the discrete case with
eigenvaluex determined by

p(t)y=e "p. (4.2
(4.8

Explicitly we have

As we shall see below, fal>1 the next-to-leading eigen-
value); stays finite or goes to zero, and henge-1 at least
Lom=(Np+1)[NSnm—(N+1) 811 1m] as fast as M. Using this result it follows that the correlation

length is the same t®(1/N) in the two formalisms.
+ nb[(n+ 1) 5n,m_ rlan,m-*—l] + N[(aqn+1+ an) é\n,m

—a0y%n,m+1~ PUr+16n+1mls 4.3 C. The eigenvalue problem

The transition matrix L truncated to size K+1)
and X (K+1) is a special kind of asymmetric Jacobi matrix
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(Ap+By —B; 0 0 )
-A, A+B, -B, 0
0 —A A,+B, —B
L= o , 4.9
—Ak-2 Ak-1+tBg-1  —Bg
\ O _AK—l AK+ BK)
|
where An(Up—Up_1) +B(U,—Un11) =AUp. (4.149
Ap=np(n+1)+Nadhq, For =0 we obviously havei®=1 for all n and the scalar
B productu®- p®=1. The eigenvector to the left is trivially re-
Bn=(ny+1)n+Nbg,. (410 Jated to the eigenvector to the right via the equilibrium dis-

Notice that the sum over the elements in every column vantiPution

ishes, except for the first and the last, for which the sums,
respectively, take the valu&, andA . In our case we have
Bo=0, butAy is nonzero. FoB,=0 it is easy to se¢using

pn:pgun- (4.19

. . X The full set of eigenvectors to the left and to the right
row manipulation that the determinant becom@gA; ...Ax !l =0,1,2...,K? may now be chosen to be orthonorrr?al

and obviously diverges in the limit ¢ —co. Hence the trun- u'.p'"=4 1, and is, of course, complete since the dimension
cation is absolutely necessary. All the coefficients in theK is finite.

32?230;(;23?2 tilﬁﬂg?edig;g; Ifer\?(/e do nc\’/\tléﬂsjﬂgﬁt]%rég O™ tis useful to express this formalism in terms of averages
genvalied, over the equilibrium distributionf,)o=2K_,f,p% Then

Ac=0 |_nstead_ of the value given above. This means that th sing Eq.(4.15 we have, for an eigenvector with>0, the
matrix is not just truncated but actually changed in the las ;

. . : . elations
diagonal element. Physically this secures that there is no ex-

ternal input to the process from cavity occupation numbers (Up)o=0
abovekK, a not unreasonable requirement. /o
An eigenvector to the right satisfies the equation (Ud)o=1
Lxp=A\p, which takes the explicit form /0™ %
—An1Pn-1 T (AT Br)Pr—Bni1Pnt1=APn- 411 <UnUrI1>O=0 for N#N\7. (4.16

Thus the eigenvectors with>0 may be viewed as uncorre-

Since we may solve this equation successively fonated stochastic functions of with zero mean and unit vari-
P1.P2,-..,Pk given py, it follows that all eigenvectors are gnce.

nondegenerate. The characteristic polynomial obeys the re- Finally, we rewrite the eigenvalue equation to the right in
cursive equation the form of A\p,=J,—J,; 1 With

de(LK_)\):(AK+ BK_)\)de(LK,]__)\)
—Ak-1BgdetLk_»—N\), (4.12

Jn:Bnpn_An—lpn—1:prn(un_un—l)- (4.17

Using the orthogonality we then find
and this is also the characteristic equation for a symmetric <
Jacobi matrix with off-diagonal elemen@,=—JA,_1B,. )
Hence the eigenvalues are the same and therefore all 7\:;0 Un(Jn=Jn+1) =(Bn(Un—=Un-1)%0, (4.18
real and, as we shall see below, non-negat{gee in
this context Ref.[55]). They may therefore be ordered \yhich incidentally proves that all eigenvalues are non-
0=No<\y<<*:*<Ag . The equilibrium distribution{2.23 cor-  negative. It is also evident that an eigenvalue is built up from

responds to.=0 and is given by the nonconstant parts, i.e., the jumpsugf
n
An- AoAq- A,
p=poT] g 1 =p2 é é é L for n=1,2,...K. D. Effective potential
4
" " 1oz " (4.13 It is convenient to introduce an effective potentigl,

first discussed by Filipowiczt al. [27] in the continuum
Notice that this expression does not involve the vanishindimit, by writing the equilibrium distribution(2.23 in the
valuesBy=A=0. form
Corresponding to each eigenvecfoto the right there is
an eigenvectou to the left, satisfyingu"L,=\u", which in o= e NV 4.19
components reads n ’ '
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with In order to reformulate the master equatid) it is con-
. venient to introduce the discrete derivatives, f(x)
Voo 1 E | nym+Nagy, 4.9 =f(x+Ax)—f(x) andA_f(x)=f(x)—f(x—Ax). Then we
"= N& M@ArngmiNbg, 429 find
for n=1. The value of the potential for=0 may be chosen 1 dp(x) - A_* J(X) (4.28
arbitrarily, for exampleV,=0, because of the normalization y dt Ax ’
constant )
with
z=> e "V 4.2 1 A
2° @2 5(x)=x-(a=b)aIp(x)+ 5, [npx+ad(x)] 5 P(X).

It is, of course, completely equivalent to discuss the shape of 429

the equilibrium distribution and the shape of the effectiveFor the general eigenvector we defipex) =Np, and write
potential. Our definition ofV,, differs from the one intro- jt asp(x)=p°(x)u(x) with u(x)=u, and find the equations
duced in Refs[27, 40 in the sense that o, is exact while

the one in[27,40 was derived from a Fokker-Planck equa-

+
tion in the continuum limit. Ap(X)=— AX I, (4.30
E. Semicontinuous formulation and
Another way of making analytical methods, such as the 1, A_
Fokker-Planck equation, easier to use is to rewrite the for- I = P IL(L+np)x+ba(x)] 1o u(x). (4.3D
malism (exactly in terms of the scaled photon-number vari-
ablex and the scaled time parametgrdefined by{(27] Equivalently the eigenvalue equation fofx) becomes
_n A_
=R (0 =[x~(a=b)q(x)] 55 ux)
6=grN. (4.22 14 A
J - <3 | [npxag(0] T u(x)|. (4.32
Notice that the variablex and notn is the natural variable
when observing the field in the cavity by means of theas pefore we also have
atomic beanjsee(3.9)]. Defining Ax=1/N and introducing
the scaled probability distributiop(x)=Np, the conserva- (u(x))o=0,
tion of probability takes the form
i (u(X)?)o=1, (4.33
EO Axp(x)=1, (423  where now the average ovep’(x) is defined as
-

(f(x))o=2,Axf(x)p°(x). As before we may also express

where the sum extends over all discrete valuex af the the eigenvalue as an average,

interval. Similarly the equilibrium distribution takes the form

1 A_u(x)\?
)\—N [(1+nb)x+bq(x)]( Ax ) 0. (4.39

pO(x) = zi e NV, (4.24
X Again it should be emphasized that all these formulas are
with the effective potential given as an “integral” exact rewritings of the previous ones, but this formulation
permits easy transition to the continuum case, wherever ap-
x plicable.
V(x)= D AX'D(X'), (4.25
x>0 F. Extrema of the continuous potential
with “integrand” The quantityD(x) in Eq. (4.26 has a natural continuation
to all real values ofx as a smooth differentiable function.
D(x)=—In npx+aq(x) . (4.26 The condition for smoothness is that the change in the argu-
(1+np)x+bg(x) ment 6\/x between two neighboring values andx+ Ax, is

much smaller than 1, a#<2N+/x. Hence folN—c the func-

The transition probability function ig(x) =sir? 64/x and the tion is smooth everywhere and the sum in E425 may be
normalization constant is given by replaced by an integral
z & X
Z=N~= Axe NV, 4.27 V(x)zf dx'D(x"), (4.35
= 0

x=0
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T 1 ) 73
B 6=6.0 o= (2k+1) 5 —ﬂ_-i—O (2k+1) )

N=10
ny = 0.15 (2k+1) 5

a=1,566=0

08

(4.39

fork=1,2, ..., anceach of these branches is double valued,
with a sub-branch corresponding to a minimd' >0) and
another corresponding to a maximui’<0). Since there

\ o are alwaysk+1 minima andk maxima, we denote the
3 minima X, (6) and the maxima,,, 1(6). Thus the minima
%o have even indices and the maxima have odd indices. They
are given as a function of through Eq.(4.36 when ¢ runs
00 05 0 15 20 through certain intervals. Thus, for the minima\¢fx), we
have

06

04

V(=)

02

0.2

0.30

8=6.0
N=10

m,_=10.11,5_ . < Pp<(k+1)m, 6H<Oo<oo,

0.25

a—b>xy(6)>0, k=01, .., (4.39

0.20

o(z) and for the maxima

0.15

kn<op<doy, ©>0>0,,

0.10

0<X2k+1(0)<a_b, k= 1,. PR (44@

0.05

Here 6,= ¢, /|sin ¢/a—b is the value ofé for which the
00 0s 10 15 20 kth branch comes into existence. Hence in the interval
i 0k<0<6y,, there are exactly R+1 branches,

FIG. 5. Example of a potential with two minimgy, x, and one XO’X,l'XZ""'XZKfl’XZK’ forming the K+1 minima andK
maximumx, (upper graph The rectangular curve represents the Maxima ofV(x). For 0<6< 6,=1/ya—b there are no ex-
exact potentia(4.20), whereas the continuous curve is given by Eq. rema.

(4.25 with the summation replaced by an integral. The value of the ~ This classification allows us to discuss the different pa-

continuous potential at=0 has been chosen such as to make therameter regimes that arise in the limit f-c. Each regime

distance minimal between the two curves. In the lower graph thdés separated from the others by singularities and are thus

corresponding probability distribution is shown. equivalent to the phases that arise in the thermodynamic
limit of statistical mechanics.

so thatD(x)=V’'(x). In Fig. 5 we illustrate the typical be-

havior of the potential and the corresponding photon-number V. PHASE STRUCTURE

distribution in the first critical regiorfsee Sec. V F Notice o ] )
that the photon-number distribution exhibits Schieich- e shall from now on limit the discussion to the case of

0.0

Wheeler oscillations typical of a squeezed sf#t@]. initially completely excited atoms =1, b=0, which simpli-
The extrema of this potential are located at the solutiondies the following discussion considerably.
to q(x) =x; they may be parametrized in the form The central issue in this paper is the phase structure of the

correlation length as a function of the paramefiein the
limit of infinite atomic pumping rateN—o, the statistical

x=(a=b)sirte, system described by the master equati0 has a number
of different dynamical phases, separated from each other by
1 b singular boundaries in the space of parameters. We shall in
0= —— 17—, (4.36 this section investigate the character of the different phases,
va—b |sing| with special emphasis on the limiting behavior of the corre-

lation length. There turn out to be several qualitatively dif-
with 0<¢<w. These formulas map out a multibranched ferent phases within a range éfclose to experimental val-
function x(6) with critical points where the derivative ues. First, the thermal phase and the transition to the maser
phase av=1 have previously been discussed in termérof
, [27,44,40. The new transition to the critical phase at
[a+ny(a=b)I[A0C) =xq'(X)] 6,=4.603 is not revealed b§n) and the introduction of the
[(1+np)x+bg(x)][NpX+aq(x)] correlation length as an observable is necessary to describe
(4.37 it. In the large flux limit{n) and{(An)? are only sensitive to
the probability distribution close to its global maximum. The
vanishes, which happens at the values @fsatisfying correlation length depends crucially also on local maxima
¢=tang. This equation has an infinity of solutiong= ¢, , and the phase transition 8t occurs when a new local maxi-
k=0,1, ...,with ¢,=0 and to a good approximation mum emerges. AP=6.3 there is a phase transition ¢n)

D'(xX)=V"(x)=
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(Lg)nm=(n+ %)5nm’

(L)am=N6nme1;

10
N

(L—)nm:(n+1)5n+1,m- (5.2
7 These operators form a representation of the Lie algebra of
e SuU(1,)
N [Lo.L.]=2Ls, [Lal.]=+L.. (5.3

It then follows that

LC: erL+e—(l+nb)L,(L3_ %)e(l-Fnb)L,e—rLJr' (54)

wherer =ny/(1+ny). This proves that. - has the same ei-
o genvalue spectrum as the simple number opetagers, i.e.,
] ) Ap=n forn=0,1, . ...SinceM =1 for =0 this is a limiting
FIG. 6. The correlation length in the thermal and maser phaseg;se for the correlation lengthgé,, = 1\ ,= 1/n for 6=0.
as a function o for various values oN. The dotted curves are the . Eq.(4.8 we obtainx,=1/(1+n/N) in the noninter-
limiting value for N=c. The correlation length grows afN near acting case. Hence in the rgjiscrete cREa=—1/Ink,=N/n
6=1 and exponentially for>6,=4.603, for N>n and this agrees with the values in Fig. 1 for
n=1,2,3 nearr=0.

taking a discrete jump to a higher value. It happens when
there are two competing global minima in the effective po- B. Thermal phase: Os6<1
tential for different values ofi. At the same point the corre- In this phase the natural variable ris not x=n/N. The
lation length reaches its maximum. In Fig. 6 we show thegtfective potential has no extremum forc@<o, but is
correlation length in the thermal and maser phases, and i§mallest forn=0. Hence forN-—so it may be approximated

Fig. 7 the critical phases, for various values of the pumping,y ts |eading linear term everywhere in this region,
rateN.

n,+1
Ny+ 02 )

NV,=n In (5.5
A. Empty cavity
Notice that the slope vanishes fé=1. The higher-order

When there is no interaction, i.eVj=1, or equivalently terms p|ay no role as |0ng aS_P2>1/\/N, and we obtain a
g,=0 for all n, the behavior of the cavity is purely thermal, planck distribution

and then it is possible to find the eigenvalues explicitly. Let

us in this case write o_1- 0% [ny+ 62\" 56
P17 np |\ 1+n, /)’ ‘
Lo=(@myt Dls= (gl —nobi =3, (5.1 with photon-number average
np+ 62
where (M=7—p7" (5.7)

which (for 6>0) corresponds to an increased temperature.
Thus the result of pumping the cavity with the atomic beam
is simply to raise its effective temperature in this region. The
mean occupation numbén) does not depend on the dimen-
sionless pumping rathl (for sufficiently largeN).

log, (16) | /\ The variance is
1+np)(ny+ 62
A \/%v = ()= () 1+ () = e
\/\é (5.9
o }\\%m\%§§ and the first nonleading eigenvector is easily shown to be
n—(n)
0 s [ 10 15 Un= ’ (59)
On

FIG. 7. The logarithm of the correlation length as a function of which indeed has the form of a univariate variable. The cor-
¢ for various values oN (10,2Q . . .,100. We haven,=0.15 here.  responding eigenvalue is found from §4.34 \,=1— ¢, or
Notice that for6> 6, the logarithm of the correlation length grows
linearly with N for large N. The vertical lines indicatedy=1, £= 1 (5.10
6,=4.603,6,=7.790, 6,=10.95, andf,=14.10. 1-—6° '
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Thus the correlation length diverges &t1 (for N—x). 3N
SENTrng @+ (.29

C. First critical point: =1

Around the critical point ab=1 there is competition be-

. . ) : D. Maser phase: k6<0,~=4.603
tween the linear and quadratic terms in the expansion of the P !

potential for smalix, In the region above the transition &1 the mean occu-
. pation numbern) grows proportionally with the pumping
n,+1 1 0 rateN, so in this region the cavity acts as a maser. There is
V(X)=x In —— + = x2 ———+0(x%). (5.11) ’ 9 y

a single minimum of the effective potential described by the
branchxg(6), defined by the regionQ¢<a in Eq. (4.36.
Expanding ind 2—1 we get We find for N>1 to a good approximation in the vicinity of
the minimum a Gaussian behavior

np+6° 6 #°+n,

V(x) 1= b 00 (6*°-1)%) /
X)= X X X, - . "
1+ ny 6(1+ nb) O(X): NV (XO) e*(N/Z)V"(Xo)(X*xO)2 (5 21)
(5.12 P 27 S

Near the critical point, i.e., fot1—¢?)N<1, the quadratic \yhere
term dominates, so the average valueas well as the width

o, becomes oD(1/y/N) instead ofO(1/N). 1-q'(xo)
Let us therefore introduce two scaling variabteand « V'(Xg)=————. (5.22
through Xo(1+np)

3(1+np) Trn, Hence for(#*—1)/N>1 we have a mean valya),=x, and
X=r \/T, ’—1=a\/ 3N (5.13  varianceo2=1/NV"(x,). To find the next-to-leading eigen-
value in this case we introduce the scaling variable
so that the probability distribution in terms of these variables— YN V" (Xo) (X—Xo), which has zero mean and unit variance

becomes a Gaussian on the half line. i.e for largeN. Then Eq.(4.32 takes the forn{in the continuum
T limit N—o)

po(r)= Zi e(r=a2, (5.14 dzu)
. (5.23

u
r Au=[1-q (Xo)](fa—w
with
This is the differential equation for Hermite polynomials.

o (-2 \/; a The eigenvalues ara,=n[1-q'(xg)], n=0,1,..., and
Z,= . dr e =\V3 1+erf| — (5.15 grow linearly withn. This may be observed in Fig. 3. The
correlation length becomes
From this we obtain 1 L
d Inz dir &= — = for 0O<¢p<mw. (5.29
(r=at+——, 0',2=£. (5.16 179'(x) 1~ ¢ cowp

As in the thermal phase, the correlation length is independent
For =0 we have explicitly of N (for largeN).

12(1+ny) , 6(ny+1)
(0= N TN
We shall now use a mean field method to get an expres-

This leads to the following equation fai(r): sion for the correlation length in both the thermal and maser
phases and in the critical region. We find from the time-

1 i) (5.17 E. Mean field calculation

2 @

du d du dependent probability distributio.4) the following exact
pu=r(r=a) o= ar " grl (5.18  equation for the average photon occupation number:
1 d(n)
where ~ gt =M+ (), (5.29
3N du)?
PEMN T\ ar K (519 or with Ax=1/N
This eigenvalue problem has no simple solution. E d{x) _ B
We know, however, thai(r) must change sign once, say y dt (Q(x+Ax)) +npAx=(x). (5.26

atr=r,. In the neighborhood of the sign change we have
u=r—rgy and, inserting this into(5.18 we getry=(a We shall ignore the fluctuations af around its mean value
+ 4+ a?)2 andp= 4+ a? such that and simply replace this by
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SRV v 2y}
%¥=q((x>+Ax)+nbe—(x>. (5.27 r=z (atya'+a),
p=4+a?, (5.39

This is certainly a good approximation in the limit Nf—o ) ) ) ]

for the maser phase because the relative fluctuatighix) which agrees with the previously obtained results.
vanishes a©(1/y/N) here, but it is of dubious validity in the -

thermal phase, where the relative fluctuations are indepen- ~ F. The first critical phase: 4.603=6,<6<6,~=7.790

dent ofN. Nevertheless, we find numerically that the mean \we now turn to the first phase in which the effective

field description is rather precise in the whole intervalpotential has two minimaxg,x,) and a maximum(x,) in

0<6<6;. between(see Fig. 5 in Sec. IV F In this case there is com-
The fixed pointx, of the above equation satisfies the petition between the two minima separated by the barrier and
mean field equation for N—oo this barrier makes the relaxation time to equilib-
rium exponentially long. Hence we expegtto be exponen-
Xo=0(Xo+AX)+npAX, (528 tially small for largeN (see Fig. 7,
which may be solved in parametric form as A =Ce ™, (5.36
Xo=Sif ¢+ N AX, whereC and » are independent df. It is the extreme small-
ness of the subleading eigenvalue that allows us to calculate
P it with high precision.
(5.29 For largeN the probability distribution consists of two

0= — .
VSin* g+ (1+np)Ax well-separated narrow maxima, each of which is approxi-

. . . . , mately a Gaussian. We define thepriori probabilities for
We notice here that there is a maximum region of existence . of the peaks

for any branch of the solution. The maximum is roughly

given by GE‘a":(kJrl)m_/N/(lJr ny). _ _ P S Axpd)= Zy (5.3
For small perturbationéx)=x,+ € we find the equation 0=, Xp ()=, -
. =X<Xp
of motion
and
g%+ AX)] (5.30
——=—[1-qg"(Xg+AX)]e, . Z,
y dt Pr= 3 AXp(X)= 5 (5.38
Xp=X<®
from which we estimate the leading eigenvalue
The Z factors are
¢ sing cosp
A=1-q'(Xg+Ax)=1— = . X1 2T
sirfg+ (1+ny)Ax 7 =S Axe NV~ g NV 53
(5.31) 0 XZO NVj (5.39
Notice that\ takes negative values in the unstable regions ofind
¢. This eigenvalue does not vanish at the critical pa@iatl .
which corresponds to 2w
P Z,= >, Axe W= N2/ = (540
1/4 X=X NV2
~(3(1+np)
b= bo= N ' (532 with Z=Z,+Z,. The probabilities satisfy of course

Py+P,=1 and we have
P%(x)=Popd(x) + Pp3(x), (5.41)

A=21\ /ﬂ, (5.33 Wherep8’2 are individual probability distributions with maxi-

SN mum atx, ,. The overlap error in these expressions vanishes
rapidly for N—o, because the rati®,/P, either converges
towards 0 ore for Vy#V,. The transition from one peak
being the highest to the other peak being the highest occurs
when the two maxima coincide, i.e., @=7.22 atN=10,
whereas forN=« it happens at=6.66. At this point the

but only reaches a small value

which agrees exactly with the previously obtained resul
(5.20. Introducing the scaling variable from (5.13 and
defining y=(¢/ $o)* we easily get

— 2__
a=( =D, correlation length is also maximal.
_ Using this formalism, many quantities may be evaluated
r=d, in the limit of largeN. Thus, for example,
p= P+ 1)y, (5.34 (X)o=PgXo+ PaXs, (5.42

and after eliminatingy and
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aZ=((x=(X)0)2o= 05Po+ d5P,+ (Xo—X2)?PoP,. 020
(5.43
Now there is no direct relation between the variance and the |
correlation length.
Consider now the expressia@.30, which shows that o010
since\, is exponentially small we have an essentially con- *
stantJ,,, except near the maxima of the probability distribu- 005 |

tion, i.e., near the minima of the potential. Furthermore since
the right eigenvector of\; satisfies=,p(x)=0, we have
0=J(0)=J() so that

In(&g0/70)/20
-~ Barrier from V{z)
=~~~ Barrier from Fokker—Planck

0.00

0, 0<x<Xq 0.05 : . :
0.0 50 100 15.0 200

J(X)=1 J1, Xo<X<X, (5.49 f

0, Xo<x<oo, . . . .
FIG. 8. Comparing the barrier height from the potentigk)

¥vith the exact correlation length and the barrier from an approxi-

This expression is more accurate away from the minima o
mate Fokker-Planck formula.

the potentialx, andx,.
Now it follows from Eg. (4.3]) that the left eigenvector
u(x) of A; must be constant, except near the minimunof _ P, Z;

the probability distribution, where the derivative could be =" Vp, " Vz,
sizable. Se we conclude thafx) is constant away from the
maximum of the potential. Hence we must approximately Po Zy
have U= P—2: Z_2 (5.5
Ug, O<x<x i i
u(x)~ 0 1 (5.45 Inserting the above solution we may solve fqr,
us, X1< X<oo,
_14ny Zot+ 2, (552
This expression is more accurate away from the maximum of YN 20202y :
the potential. o
We may now relate the values dfandu by summing Eq.  or more explicitly
(4.30 from x; to infinity, 14
. Mz—xl( anb) V= Vi(WVge NVaimVol 4 (e NVaVa)),
J1=3(x1) =1 2 Axp’()U(X)=\1P,U,. (5.46 (553

X=Xq
Finally we may read off the coefficientg and C from Eq.
From Eq.(4.3) we get by summing over the interval be- (5.36. We get
tween the minima
V=V, for Vo>V,
77:{vl—vz for Vo>V, (554

X2

NJ;
X —5—.
1+np 5% Xp2(x)

(5.47

U= Up=
and

The inverse probability distribution has fdf— a sharp
maximum at the maximum of the potential. Let us define ¢C

X.(1+n vy for Vo>V
_ l( b) \/—_VZX[\/—O 0 2 (5-55)

2 Jv—; for V,>V,.

X2
Z,= > Ax l NV ~ i eNVi | /Z_TTH (5.48 This expression is nothing but the result of a barrier pen-
X=Xg X1 N(—=V7) etration of a classical statistical procd&®]. We have de-
rived it in detail in order to get all the coefficients right.
Then we find It is interesting to check numerically how well EG.53
actually describes the correlation length. The coefficigig

NZZjJ; NMZiZoup given by Eq.(5.54, and we have numerically computed the

U,—Up= = . (549)

1+n, 1+n, highest barrier from the potenti®l(x) and compared it with
an exact calculation in Fig. 8. The exponeyis extracted by
But u(x) must be univariate, i.e., comparing two values of the correlation lengéh, and &y,
for large values oN (70 and 90, where the difference in the
UoPo+uzP>=0, prefactorC should be unimportant. The agreement between
the two calculations is excellent when we use the exact po-
uSPOJr u§P2= 1, (5.50 tential. As a comparison we also calculate the barrier height

from the approximative potential in the Fokker-Planck equa-
from which we get tion derived in[27,28. We find a substantial deviation from
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50 (p(t+T))=e""c(M(9))(p(1)). (6.2
The factorization is due to the fact thp{t) only depends
4.0 on ¥ for the preceding atoms, and that all atoms are statisti-
cally independent. The effect is simply to average
3.0 q(9)=sirf(9/x) in M(9), and we get
A
— 0?1202
20 1 axog\ "0
(=711~ ( 1+
1.0
62 2\/;0'2
X cos{—2 arctar( 0) ] . (6.3
0.0 oy 0
0.0 5.0 10.00 15.0 20.0

This averaged form af(6), which depends on the two inde-

FIG. 9. The first seven subleading eigenvaluesNe+50 and pendent_ variableg/o, and 9\&' enters in the analysi_s (_)f the
ny=0.15. phases in exactly the same way as before. In the lirpit0
we regain the originatj(6), as we should. For very large,

the exact value in that case. It is carefully explained in@nd fixedd, (q) approaches zero.
[27,28 why the Fokker-Planck potential cannot be expected
to give a quantitatively correct result for smalj. The exact A. Revivals and prerevivals

result (solid line) has some extra features @1 and just The phenomenon of quantum revival is an essential fea-

below §=6,=4.603, due to finite-size effects. __ture of the microlaser systetsee[15—19, and [36—39).
When the first subleading eigenvalue goes exponentiallfne revivals are characterized by the reappearance of

to zero, or equivalently the correlation length grows expo-girongly oscillating structures in the excitation probability of
nentially, it becomes important to know the density of eigen-y, outgoing atom which is given by E€B.1):

values. If there is an accumulation of eigenvalues around 0,
the long-time correlation cannot be determined by only the

;
first subleading eigenvalue. It is quite easy to determine the P(+)=u° MH)PO:En: [1-qni1(0)Ipp, (6.9
density of eigenvalues simply by computing them numeri-

cally. wherep? is the photon distributiorf2.23 in the cavity be-

In Fig. 9 we show the first seven subleading eigenvaluegyre the atom enters. Revivals occur when there is a reso-
for N=50 andn,=0.15. It is clear that at the first critical [,53nce between the period @, and the discreteness im
point after the maser phag6é=0,) there is only one eigen- [3g] |t the photon distribution in the cavity has a sharp peak
value going to zero. At the_next critical phalge=6,) thert_a IS at n=n, with a position that does not change appreciably
one more eigenvalue coming down, and so on. We find thahen ¢ changes, as, for example, for a fixed Poisson distri-
there is only one exponentially small eigenvalue for eachiion, then it is easy to see that the first revival becomes
new minimum in the potential, and thus there is no aCcCUMUy5nounced in the region @k ., =2 ngN. For the equilib-

: f rev .
lation of eigenvalues around O. rium distribution without any spread in the velocities we do

not expect any dramatic signature of revival, the reason be-
VI. EFFECTS OF VELOCITY FLUCTUATIONS ing that the peaks in the equilibrium distributiprﬂ(e) move
. . ... rapidly with 6. In this context it is also natural to study the

The 'tlme it takes an atc_)m t‘.) pass through thg cawty 'Short-time correlation between two consecutive atoms, or the

determined by a velocity filter in front of the cavity. This

filter is not perfect and it is relevant to investigate what aprobab|llty of finding two consecutive atoms in the excited

spread in flight time implies for the statistics of the interac—leveI [30]. This quantity is given by
tion between cavity and beam. To be specific, we consider
the flight time as an independent stochastic variable. Again,
it is more convenient to work with the rescaled variable

Po(+,+) =00 M(+)(1+Lc/N) "M (+)p°

and we denote the corresponding stochastic variablé. by = [1-Gns2(O)1(L+Lc/N)
order to get explicit analytic results we choose the following nm
probability distribution for positives: X[ 1= Qms1(6)1p2, (6.5)
a+l . . . . .
H(0,a,B)= B e B, 6.1) defined in Eq.(3.3. In Appendlx C we give _ein ana_lyt|c
I'a+1) expression for the matrix elements @+Lc/N)"=. In Fig.

10 we presenP(+) andPy(+,+) for typical values oN and
with B=6lo% and a=¢lo5—1, so that (9)=6 and n,.
{(9— 0)2>=a§. Other choices are possible, but are not ex- If we on the other hand smear out the equilibrium distri-
pected to change the overall qualitative picture. The discretbution sufficiently as a function o, revivals will again
master equatiof2.19 for the equilibrium distribution can be appear. The experimental situation we envisage is that the
averaged to yield atoms are produced with a certain spread in their velocities.
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FIG. 11. Phase diagram in theo, plane. The solid lines indi-
cate where new minima in the effective potential emerge. In the
lower left corner there is only one minimum at=0, this is the
thermal phase. Outside that region there is always a minimum for
nonzeron, implying that the cavity acts as a maser. To the right of
the solid line starting a#=4.6, and for not too large,, there are
two or more minima and thus the correlation length grows expo-
nentially with the flux. For increasing, minima disappear across
the dashed lines, starting with those at smmallThe dotted lines
show where the two lowest minima are equally deep.

0.0

] 50 100 150 200 =
h (@)=x,
FIG. 10. Upper graph: Probabilities of finding one atom, or two d(a) =1. (6.6)
consecutive ones, in the excited state. The flux is givetNEy20 dx

and the thermal occupation numbernig=0.15. The curves show
no evidence for the resonant behavior of revivals. Lower graph: 1he phase boundary between the thermal and the maser

Presence of revival resonances in equilibrium after averaging th@hase is determined by the effective potential for small

photon distribution over. The same parameters as in the upper The —condition =1 is now simply replaced by

graph are used but the variancediis now given byo2=10. (¥’)=6"+05=1, which also follows from the explicit form
of (g) in Eq. (6.3). The transitions from the maser phase to

The statistically averaged stationary photon distribution dethe critical phases are determined numerically and presented
pends on the spread. After the passage through the cavity vie Fig. 11. The first line starting fron#=4.6 shows where
measure both the excitation level and the speed of the atorthe second minimum is about to form, but exactly on this
There is thus no averaging in the calculationf+) and line it is only an inflection point. At the poina about
Po(+,+), but these quantities now also depend on the actuar,~1.3 it disappears, which occurs when the second mini-
value 9 for each atom. For definiteness we select only thosenum fuses with the first minimum. From the cusp at paint
atoms that fall in a narrow range around the average v@lue there is a new lingdashed showing where the first mini-
in effect putting in a sharp velocity filter after the interaction. mum becomes an inflection point. Above the cusp at paint
The result for an averaged photon distribution is presented ithere is only one minimum. Going along the line from point
Fig. 10(lower graph, where clear signs of revival are found. b to ¢ we thus first have one minimum, then a second mini-
We also observe that i®y(+,+) there are prerevivals, oc- mum emerges, and finally the first minimum disappears be-
curring for a value o half as large as for the usual revivals. fore we reach point. Similar things happen at the other
Its origin is obvious since iPy(+,+) there are terms con- cusps, which represent the fusing points for other minima.
taining q 2 that vary with the double of the frequency @f.  Thus solid lines show where a new minimum emerges for
largen (~N) as@increases, while dashed lines show where
B. Phase diagram a minimum disappears for smaillas o, increases. We have
Iso indicatedby dotted lineg the first-order maser transi-
ons where the two dominant minima are equally deep.
These are the lines wherg and Q; have peaks andn)
tfiakes a discontinuous jump.

The different phases discussed in Sec. V depend strong
on the structure of the effective potential. Averaging oger
can easily change this structure and the phases. For instan
averaging with larger, would typically wash out some of
the minima and lead to a different critical behavior. We shall
determine a two-dimensional phase diagram in the param-
etersé and o, by finding the lines where new minima occur ~ So far, we have mainly discussed characteristics of the
and disappear. They are determined by the equations large flux limit. These are the defining properties for the

VII. FINITE-FLUX EFFECTS
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different phases in Sec. V. The parameter that controls finite-
flux effects is the ratio between the period of oscillations in
the potential and the size of the discrete stepsxinif
q=sir’(6yX) varies slowly overAx=1/N, the continuum
limit is usually a good approximation, while it can be very -
poor in the opposite case. In the discrete case there exist, for
certain values of, states that cannot be pumped above a
certain occupation number singg=0 for that level. This
effect is not seen in the continuum approximation. These
states are called trapping stafé4] and we discuss them and
their consequences in this section.

The continuum approximation starts breaking down for
small photon numbers whet=2mN, and is completely 1o , , ‘ ‘
inappropriate when the discreteness is manifest for all pho- Y 20 40 s, 80 100
ton numbers lower thaN, i.e., for 6=2=7N. In that case our

analysis in Sec. V breaks down and the system may occa- FiG. 12. Distance between the initial probability distribution
sionally, for certain values of, return to a noncritical phase. p,(0) andp,(6) measured by, 2(6) in Eq. (7.1).

0l

10°

10°

the cavity is in a trapping state. That implies thatvanishes
o e ) for n=1 (for n,=0) and thus there are no photons in the
The equilibrium distribution in Eq(2.23 has peculiar  cavity. For larger values af,, the trapping is less efficient
properties whenevey,,=0 for some value ofn, in particular  and the thermal revivals go away.
whenn,, is small, and dramatically so when=0. This phe- Going to much larger values @fwe can start to look for
nomenon occurs wheé=kN/m and is called a trapping periodicities in the fluctuations id, 2(6). In Fig. 13 (upper
state. When it happens, we hapg=0 for all n=m (for  graph we present the spectrum of periods occurring in
n,=0). The physics behind this can be found in E2.12), d, 2(6) over the range € 6<1024.
where M (—) determines the pumping of the cavity by the  Standard revivals should occur with a periodicity o8
atoms. Ifqy,=0 the cavity cannot be pumped abawvepho- =2 ./(n), which is typically between 15 and 20, but there
tons by emission from the passing atoms. For any nonzergye hardly any peaks at these values. On the other hand, for

abovem photons ancp,#0 even forn=m. The effect of — _ . 7o there are very clear peaks, even thomgh-1.0,
trapping is lost in the continuum limit where the potential is\ynich is a relatively large value.

approximated by Eq.(4.35. Some experimental conse- |5 order to see whether trapping states influence the cor-
quences of trapping states were studied for very 10w €M |ation length we present in Fig. 13 a similar spectral de-
perature in[52] and it was stated that in the range composition of&(6) (lower graph and we find the same

np=0.1-1.0 no experimentally measurable effects wereyeaxs A more direct way of seeing the effect of trapping
present. We, however, show below that there are clear sig-

nals of trapping states in the correlation length even for

A. Trapping states

0.06
nb=1.0.
B. Thermal cavity revivals 0.04
Due to the trapping states, the cavity may revert to a 74
statistical state, resembling the thermal staté-a®, even if 0.02 |
6>0. By thermal revival we mean that the state of the cavity
returns to the#=0 thermal state for other values @fEven if m
the equilibrium state for nonzeré can resemble a thermal 0.00 s 10 15 >0
state, it does not at all mean that the dynamics at that value 0.20
of #is similar to what it is at¥=0, since the deviations from
equilibrium can have completely different properties. A 0.15 1
straightforward measure of the deviation from #e0 state I7&@)
is the distance in the?2 norm, 0.10 |
% 1/2 0.05 +
dia(6)=| 2 [Pn(0)=Pa(6)1%] - (7.9 ﬂ
0.00 [} 5 10 15 20
A

In Fig. 12 we exhibitd, 2(#) for N=10 and several values of
Ny . i ) . FIG. 13. Amplitudes of Fourier modes df 2(4) (upper graph
' For small vaIues' o, we find cawty revivals at all mul-  angg(g) (lower graph as functions of periods using=10,n,=1.0

tiples of Y10, which can be explained by the fact that and scanning @ #<1024. There are pronounced peaks at the values

sin(@yn/N) vanishes fon=1 andN=10 at those points, i.e., of trapping statesA §=mN/n.
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200 . . tion length remains exponentially large as a functioofs
0 long as there are several maxima, though the exponential
j}) factor depends on the details of the photon distribution.
0 No quantum interference effects have been important in
our analysis and the statistical aspects are purely classical.
The reason is that we only study one atomic observable, the
excitation level, which can take the valuesl. Making an
analogy with a spin system, we can say that we only measure
the spin along one direction. It would be very interesting to
measure noncommuting variables, i.e., the spin in different
directions or linear superpositions of an excited and decayed
atom, and see how the phase transitions can be described in
0 ‘ , terms of such observabl¢d3,45. Most effective descrip-
0.0 5.0 10.0 15.0 tions of phase transitions in quantum field theory rely on
classical concepts, such as the free energy and the expecta-
FIG. 14. Correlation lengths for different valuesrgf. The high ~ tion value of some field, and do not describe coherent ef-
peaks occur for trapping states and go awayngascreases. fects. Since linear superpositions of excited and decayed at-
oms can be injected into the cavity, it therefore seems to be
states is to study the correlation length for srmgll In Fig.  possible to study coherent phenomena in phase transitions
14 we see some very pronounced peaks for smailvhich both theoretically and experimentally, using the micromaser.
rapidly go away whem,, increases. They are located @t
=mkN/n for every integerk and n. The effect is most ACKNOWLEDGMENTS

dramatic wherk is small. In Fig. 14 there are conspicuous BL and B-S.S. wish to thank Gabriele Veneziano and

peaks at=my10x {143,1/2,1,2K3,2/v2}, agreeing well the TH Division for the hospitality at CERN when this work

with the formula for trapping states. Notice how sensitive the . . . .
: : : was carried out and I. Lindgren for providing early guidance
correlation length is to the temperature whep is small

[52] to the experimental work. The research by B.-S.S. was sup-
' ported in part by the Swedish National Research Council
under Contract No. 8244-3186, in part by the Research Coun-

VIII. CONCLUSIONS cil of Norway under Contract No. 420.95/004. The research
We have thoroughly discussed various aspects of lon (-).f B.L. was supported in part _by the _Danish Research Coun-
cils for the Natural and Technical Sciences through the Dan-

time correlations in the micromaser. It is truly remarkableish Computational Neural Network Cent@ONNECT) un-

that this simple dynamical system can show such a rich
structure of different phases. The two basic parameters in th((jeer Contracts No. 5.21.08.07 and No. 5.26.18.18.
theory are the time the atom spends in the cavitygnd the _

ratio N=R/y between the rate at which atoms arrive and the APPENDIX A: JAYNES-CUMMINGS MODEL

decay constant of the cavity. The natural observables are WITH DAMPING
related to the statistics of the outgoing atom beam, the aver- | most experimental situations the time the atom spends
age excitation being the simplest one. We propose to use thg the cavity is small compared to the average time between
long-time correlation length as a second observable descrigne atoms and the decay time of the cavity. Then it is a good
ing different aspects of the photon statistics in the cavity approximation to neglect the damping term when calculating
The phase structure we have investigated is defined in th@e transition probabilities from the cavity-atom interaction.
limit of large flux, and can be summarized as follows. In order to establish the range of validity of the approxima-
(1) Thermal phase,86<1. The mean number of pho-  jon we shall now study the full interaction governed by the
tons (n) is low (finite in the limit N—), and so is the 3¢ Hamiltonian in Eq(2.1) and the damping in Eq2.14).

varianceoy, and the correlation length , The density matrix for the cavity and one atom can be writ-
(2) Transition to maser phas#=1. The maser is start- o a5

ing to get pumped up and (n), anda,, grow like JN.

3333
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(3) Maser phase, 46#<6,=4.603. The maser is p=p°@1+p*Q0,+p T R®c_+p R0, , (A1)
pumped up to{n)~N, but fluctuations remain smaller, .
o.~ N, whereast is finite. where p~=p*+ip¥ and 0. =(oy*i0,)/2. We want to re-

(4) First critical phase,f,<6<6,~7.790. The correla- Strict the cavity part of the density matrix to be diagonal, at

tion length increases exponentially with but nothing par-  léast thep, part, which is the only part of importance for the
ticular happens witi{n) anda,, at 6,. following atoms, provided that the first one is left unob-

(5) Second maser transitiod~6.6. As the correlation Served(see discussion in Sec. I)BIntroducing the notation
length reaches its maximun{n) makes a discontinuous

0_
jump to a higher value, though in both phases it is of the pn=(nlpoln),
order ofN. The fluctuations grow likd& at this critical point. ,
At higher values off there are more maser transitions in pr={nlpsn),

(n), accompanied by critical growth af,, each time the .
photon distribution has two competing maxima. The correla- pn=(nlp+In—1)—(n—1|p_[n), (A2)



54 DYNAMICS, CORRELATIONS, AND PHASES OF TH. .. 5189

the equations of motion can be written as ps()=pn_1,
dp |g Nt)= —
— = (\/—pn vn+ pn+1) ')’2 anpmv pa(t) pn—lcoizgt\/ﬁ)'
pL(t)=—ipy_ssin(2gtyn). (A8)
dpn _ig

(‘/—pn N+ 1pni 1) - 72 Lomom: Equation (A6) is a matrix equation of the form
p=(Cy— yC,)p. WhenC, andC, commute the solution can

. be written asp(t) =exp(— yCt)exp(Cqt) p(0), which is the

dpp 0_ 0 z_ 2 expression used in E¢2.19. In our caseC, andC; do not
_ _ .z _ = =+ -19). 0 1
dt 29 \/ﬁ(p” Pn-1"Pn~ Pn-1) 7; Lamfm commute and we have to solve the equations perturbatively
(A3) in y. Let us write the solution ag(t) =exp(Cyt) p4(t) since
exp(Cyt) can be calculated explicitly. The equation fg(t)

where becomes
LS =[(np+1)n+ny(n+1)]18, m—(Np+1)(N+1)S, m d
nm b b n,m b n,m—1 % __ yefcotclecotpl(t), (A9)
_nbngn,m-%—l: t
Lon=[Nnp(2n+1)— 3180 m— (Np+1) Jn(n+ 1) Snm-1 which to lowest order iny can be integrated as
_nb\/n(n_l) 5n,m+1 (A4)

pi(1)=—7y f dt e “0'C,e%'p(0)+p(0). (A10)
It is thus consistent to study the particular form of the cavity 0
density matrix, which has only one nonzero diagonal or sub-
diagonal for each component, even when damping is inThe explicit expression for ex@gt) is
cluded. Our strategy shall be to calculate the first-order cor-

rection in y in the interaction picture, using the JC 1 0 0

Hamiltonian as the free part. The JC part of E43) can be o

drastically simplified using the variables eSot=5,,| O cog2gtyn) i sin2gtyn) |, (A11)
n-1 0 isin2gtyn) cog2gtn)

pa=po+py —pp+pl

pi=ph—ph=l_pn_pn=1, (A5) and therefore eXﬁCOt)Clexp_(Cot) is a pounded fgnctjon
of t. The elements o€, are given by various combinations
The equations of motion then take the form of L 5m andL o, in Eq. (A4) and they grow at most linearly
with the photon number. Thus the integrand of E410) is
dpy 04 c of the order of(n) up to ann,-dependent factor. We con-
dat 2 % [(Limt L= 1m-1)Pm clude that the damping is negligible as long pgn)<1,
unlessn,, is very large. When the cavity is in a maser phase,
+ (L= Ly 1m 0P3] (n) is of the same order of magnitude Bs=R/y, so the

condition becomesR<1.

dpa
—==2igyn i—— Lom—
T g+np, E[ i~ Ln-1m-1) P APPENDIX B: SUM RULE

FOR THE CORRELATION LENGTHS

(LC +Ln 1m-— l)pm] . . . H
In this appendix we derive the sum rule quoted in Eg.

dp, _ . L. (3.14 and use the notation of Sec. IV C.
<t =29 Vnps— 7’%‘4 LomPm - (AB) For Ay =0 the determinant dét, becomes3,B;---By as

may be easily derived by row manipulation. Sinkg only
occurs linearly in the determinant it must obey the recursion
relation detL=B,---Bx+AgdetLi_,. Repeated applica-
tion of this relation leads to the expression

The initial conditionsp(0)=p,_1, p3(0)=—p,_,, and
pr (0)=0 are obtained from

TrLp(0)[n)}{n|®1]=2p5(0)=pn, -
T p(0)|n){n|®3(1—0,)]=p5(0)— ph(0)=0, detlLy= g,o Bo*Bk-1Ak " Ak - (B1)
Tr[p(0)[n)(n|® o ]=Tr[p(0)|n)(n|® 07, ]=0. (A7) . _ :
This is valid for arbitrary values 0B, and A« . Notice that

In the limit y—0 it is easy to solve EA6) and we get back here we defineB,---B,_;=1 for k=0 and similarly
the standard solution of the JC equations, which is A -Ag=1fork=K+1.
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In the actual case we ha®y=Ay=0, so that the deter- and
minant vanishes. The characteristic polynomial consequently
takes the form

defLk—=N)=(=N)(Ag=N) - (Agk—N\) D,=D;>, —. (B4)
=—D;A+D,A2+0O(\3), (B2)

where the last expression is valid fer—-0. The coefficients _
P 4 To calculateD, we note that it is the sum of th€ sub-

are : . ;
determinants along the diagonal. The subdeterminant ob-
Di=N\i "Nk, (B3)  tained by removing th&th row and column takes the form
|
Ap+By —B;
—Ax-2 Ax-1tBy1 0
: (B5)
0 Ac+1tBiir —Byiz

which decomposes into the product of two smaller determi- This sum rule is valid for finit& but diverges folK —o,
nants which may be calculated using E@1). Using because the equilibrium distributigrf approaches a thermal
By=A«=0 we get distribution for n>N. Hence the right-hand side diverges
K logarithmically in that limit. The left-hand side also diverges
logarithmically with the truncation size because we have
:go Ao+ Ak-1Bi+1 Bk (B6) A 3=n for the untruncated thermal distribution. We do not
know the thermal eigenvalues for the truncated case, but ex-

Repeating this procedure f@,, which is a sum of all pos- pect that they will be of the form }=n+0(n?K) since
sible diagonal subdeterminants with two rows and columnghey should vanish fon=0 and become progressively worse
removed (G=k<I=K), we find asn approache¥. Such a correction leads to a finite cor-

rection toX,1/\,. In fact, evaluating the right-hand side of
! Eq. (B11), we get for largek

1 K
> > Ay AciBg
k=0 I=k+1 m=k+1

ey
|

D2=

K K K
1 1- [nb (1+ nb)]” 1
N0 = ——In(1+ny).
XBm_lAm"'A|_1B|+1“'BK. (B?) Z g Z n nZl n ( b)
(B12)

Finally, making use of Eq4.13 we find
Subtracting the thermal case from EB11) we get in the

K
Di=——— 2 Pk (B8)
i ( 1 )_ - ( A1-PY 1-[ny/(1+ny)]"
and = = BnPn n
B K-1 K | p p (813)
k |
D= Z ;k: E 0" (B9) Here we have extended the summation to infinity under the
BrnPm assumption that for large we havex ;=\ 2. The left-hand
Introducing the cumulative probability side can be approximated iy 1 in regions where the lead-
ing correlation length is much greater than the others. A
comparison of the exact eigenvalue and the sum-rule predic-
=> p° (B10)  tion is made in Fig. 4.
m=0

and interchanging the sums, we get the correlation sum rule APPENDIX C: DAMPING MATRIX

K 0 0 In this appendix we find an integral representation for the
> 1 > Pa(1-Py /PK+1)_ (11  matrix elements of X+ Lc) L, wherelLc is given by Eq.
n=1 An =1 npn (2.18. Let
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o

Un= 20 [XOnmt (L) nmlWm (Cy

and introduce generating functionaléz) andw(z) for com-
plex z defined by

v(2)=2>, Z,, W)=, Z'w,. (C2)
n=0 n=0
By making use of
v(2)= X (X Lc)nmZ "W, (c3

n,m=0
one can derive a first-order differential equation ¥¢fz),

dw(z)
dz

[X+ny(1=2)w(2)+[1+ny(1—2)](z—1) =v(2),

(CH
which can be solved with the initial conditian(1)=1, i.e.,

w(1)=1/. If we consider the monomial(z)=v,z" and
the correspondingv(z) =w,,(z), we find that
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1 1 1-t(1+ny) ] +t(1+ny)}"
[1+npt(1—z)]m+?

W(2)= det(l—t)
(CH

Therefore k+L.) o is given by the coefficient of” in the
series expansion af,(z). In particular, we obtain fon,=0
the result

1_<m) F'x+mI'(m—n+1)
(X+LC)nm_ n F(X+m+ 1) ’ (CG)
wherem=n. We then find that
~ " m! NI(N+n)
7)0(-!-,—0—)—“20 co§(gr\/n+1)mzn Wm
x co(grym+1)p°, (C7)

wherep?, is the equilibrium distribution given by E¢2.23,
and wherex=N=R/y. Equation(C7) can also be derived
from the known solution of the master equation in E2j14)
for n,=0 [46]. For smalln,, and/or largex, Eq. (C5) can be
used to a find a series expansionnig.
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