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The micromaser possesses a variety of dynamical phase transitions parametrized by the flux of atoms and the
time of flight of the atom within the cavity. We discuss how these phases may be revealed to an observer
outside the cavity using the long-time correlation length in the atomic beam. Some of the phase transitions are
not reflected in the average excitation level of the outgoing atom, which is the commonly used observable. The
correlation length is directly related to the leading eigenvalue of the time evolution operator, which we study
in order to elucidate the phase structure. We find that as a function of the time of flight the transition from the
thermal to the maser phase is characterized by a sharp peak in the correlation length. For longer times of flight
there is a transition to a phase where the correlation length grows exponentially with the flux. We present a
detailed numerical and analytical treatment of the different phases and discuss the physics behind them.
@S1050-2947~96!06010-6#

PACS number~s!: 84.40.Ik, 42.50.Dv

I. INTRODUCTION

The highly idealized physical system of a single two-level
atom in a superconducting cavity, interacting with a quan-
tized single-mode electromagnetic field, has been experimen-
tally realized in the micromaser@1–5# and microlaser sys-
tems @6#. Details and references to the literature can be
found, in e.g., the reviews@7–13#. In the absence of dissipa-
tion ~and in the rotating wave approximation! the two-level
atom and its interaction with the radiation field are well de-
scribed by the Jaynes-Cummings~JC! Hamiltonian @14#.
Since this model is exactly solvable it has played an impor-
tant role in the development of modern quantum optics~for a
recent account see, e.g., Refs.@12,13#!. The JC model pre-
dicts nonclassical phenomena, such as revivals of the initial
excited state of the atom@15–20#, experimental signs of
which have been reported@21#.

Correlation phenomena are important ingredients in the
experimental and theoretical investigation of physical sys-
tems. Intensity correlations of light~see, e.g.,@54#! were used
by Hanbury-Brown and Twiss@22# as a tool to determine the
angular diameter of distant stars. The quantum theory of in-
tensity correlations of light was later developed by Glauber
@23#. These methods have a wide range of physical applica-
tions including investigation of the space-time evolution of
high-energy particle and nuclei interactions@24,25#. In the
case of the micromaser we have recently suggested@26# that
correlation measurements on atoms leaving the micromaser
system can be used to infer properties of the quantum state of
the radiation field in the cavity.

In this paper we present a detailed account of the role of
long-time correlations in the outgoing atomic beam and their

relation to the various phases of the micromaser system.
Fluctuations in the number of atoms in the lower maser level
for a fixed transit timet is known to be related to the photon-
number statistics@27–30#. The experimental results of
@31, 53# are clearly consistent with the appearance of non-
classical, sub-Poissonian statistics of the radiation field, and
exhibit the intricate correlation between the atomic beam and
the quantum state of the cavity. Related work on character-
istic statistical properties of the beam of atoms emerging
from the micromaser cavity may be found in Refs.@32–34#.

The paper is organized as follows. In Sec. II we discuss
the standard theoretical framework for the micromaser and
introduce some notation. A general discussion of long-time
correlations is given in Sec. III, where we also determine the
correlation length numerically. Before entering the analytic
investigation of the phase structure we introduce some useful
concepts in Sec. IV and discuss the eigenvalue problem for
the correlation length. The heart of the paper lies in Sec. V,
where details of the different phases are analyzed. In Sec. VI,
we study effects related to the finite spread in atomic veloci-
ties. The phase boundaries are defined in the limit of an
infinite flux of atoms, but there are several interesting effects
related to finite fluxes as well. We discuss these issues in
Sec. VII. Finally we summarize our results in Sec. VIII.

II. BASIC MICROMASER THEORY

In the micromaser a beam of excited atoms is sent through
a cavity and each atom interacts with the cavity during a
well-defined transit timet. The theory of the micromaser has
been developed in@27,28#, and in this section we briefly
review the standard theory, generally following the notation
of that paper. We assume that excited atoms are injected into
the cavity at an average rateR and that the typical decay rate
for photons in the cavity isg. The number of atoms passing
the cavity in a single decay timeN5R/g is an important
dimensionless parameter, effectively controlling the average
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number of photons stored in a high-quality cavity. We shall
assume that the timet during which the atom interacts with
the cavity is so small that effectively only one atom is found
in the cavity at any time, i.e.,Rt!1. A further simplification
is introduced by assuming that the cavity decay time 1/g is
much longer than the interaction time, i.e.,gt!1, so that
damping effects may be ignored while the atom passes
through the cavity. This point is further elucidated in Appen-
dix A. In the typical experiment of Ref.@31# these quantities
are given the valuesN510,Rt50.0025, andgt50.000 25.

A. The Jaynes-Cummings model

The electromagnetic interaction between a two-level atom
with level separationv0 and a single mode with frequencyv
of the radiation field in a cavity is described, in the rotating
wave approximation, by the Jaynes-Cummings Hamiltonian
@14#

H5va* a1 1
2v0sz1g~as11a*s2!, ~2.1!

where the coupling constantg is proportional to the dipole
matrix element of the atomic transition.1 We use the Pauli
matrices to describe the two-level atom and the notation
s65(sx6 isy)/2. For g50 the atom-plus-field statesun,s&
are characterized by the quantum numbern50,1, . . . of the
oscillator ands56 for the atomic levels~with 2 denoting
the ground state!. At resonancev5v0 the levelsun21,1&
and un,2& are degenerate forn>1 ~excepting the ground
staten50!, but this degeneracy is lifted by the interaction.
For arbitrary couplingg and detuning parameterDv5v02v
the system reduces to a 232 eigenvalue problem, which may
be trivially solved. The result is that two new levels are
formed as superpositions of the previously degenerate ones
with a separation in energyEn21,12En,25ADv214g2n.
The system performs Rabi oscillations with this frequency
between the original, unperturbed states with transition prob-
abilities @14#

z^n,2ue2 iH tun,2& z2512qn~t!,

z^n21,1ue2 iH tun,2& z25qn~t!,

z^n,1ue2 iH tun,1& z2512qn11~t!,

z^n11,2ue2 iH tun,1& z25qn11~t!. ~2.2!

These are all expressed in terms of

qn~t!5
g2n

g2n1 1
4Dv2

sin2~tAg2n1 1
4Dv2!. ~2.3!

Notice that forDv50 we haveqn5sin2(gtAn). Most of the
following discussion will be limited to this case.

Denoting the probability of findingn photons in the cav-
ity by pn we find the conditional probability that an excited
atom decays to the ground state in the cavity to be

P~2 !5^qn11&5 (
n50

`

qn11pn . ~2.4!

It is this sum over the incommensurable frequenciesgAn that
is the cause of some of the most important properties of the
micromaser, such as quantum collapse and revivals~see, e.g.,
Refs.@36–38#!. These effects are most easily displayed in the
case that the cavity field is coherent with Poisson distribution

pn5
^n&n

n!
e2^n&. ~2.5!

In the more realistic case, where the changes of the cavity
field due to the passing atoms is taken into account, a com-
plicated statistical state of the cavity arises@27,39–42#. It is
the details of this state that are investigated in this paper.

B. Mixed states

The above formalism is directly applicable when the atom
and the radiation field are both in pure states initially. In
general the statistical state of the system is described by an
initial density matrixr, which evolves according to the usual
rule r→r(t)5exp(2iHt !r exp(iHt ). If we disregard, for the
moment, the decay of the cavity field due to interactions with
the environment, the evolution is governed by the JC Hamil-
tonian in Eq.~2.1!. It is natural to assume that the atom and
the radiation field of the cavity initially are completely un-
correlated so that the initial density matrix factorizes in a
cavity part and a product ofk atoms as

r5rC^ rA1^ rA2^ ••• ^ rAk. ~2.6!

When the first atomA1 has passed through the cavity, part of
this factorizability is destroyed by the interaction and the
state has become

r~t!5rC,A1~t! ^ rA2^ ••• ^ rAk. ~2.7!

The explicit form of the cavity-plus-atom entangled state
rC,A1(t) is analyzed in AppendixA. After the interaction,
the cavity decays, more atoms pass through, and the state
becomes more and more entangled. If we decide never to
measure the state of atomsA1 ,...,Ai with i,k, we should
calculate the trace over the corresponding states and only the
r0 component remains. Since the time evolution is linear,
each of the components in Eq.~2.7! evolves independently,
and it does not matter when we calculate the trace. We can
do it after each atom has passed the cavity, or at the end of
the experiment. For this we do not even have to assume that
the atoms are noninteracting after they leave the cavity, even
though this simplifies the time evolution. If we do perform a
measurement of the state of an intermediate atomAi , a cor-
relation can be observed between that result and a measure-
ment of atomAk , but the statistics of the unconditional mea-
surement ofAk is not affected by a measurement ofAi . In a
real experiment also the efficiency of the measuring appara-
tus should be taken into account when using the measured

1This coupling constant turns out to be identical to the single-
photon Rabi frequency for the case of vanishing detuning, i.e.,
g5V. There is actually some confusion in the literature about what
is called the Rabi frequency@35#. With our definition, the energy
separation between the shifted states at resonance is 2V.
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results from atomsA1 ,...,Ai to predict the probability of the
outcome of a measurement ofAk ~see Ref.@32# for a detailed
investigation of this case!.

As a generic case let us assume that the initial state of the
atom is a diagonal mixture of excited and unexcited states

rA5S a 0

0 bD , ~2.8!

where, of course,a,b>0 and a1b51. Using that both
preparation and observation are diagonal in the atomic states,
it may now be seen from the transition elements in Eq.~2.2!
that the time evolution of the cavity density matrix does not
mix different diagonals of this matrix. Each diagonal so to
speak ‘‘lives its own life’’ with respect to dynamics. This
implies that if the initial cavity density matrix is diagonal,
i.e., of the form

rC5 (
n50

`

pnun&^nu, ~2.9!

with pn>0 and( n50
` pn51, then it stays diagonal during the

interaction between atom and cavity and may always be de-
scribed by a probability distributionpn(t). In fact, we easily
find that after the interaction we have

pn~t!5aqn~t!pn211bqn11~t!pn11

1@12aqn11~t!2bqn~t!#pn , ~2.10!

where the first term is the probability of decay for the excited
atomic state, the second the probability of excitation for the
atomic ground state, and the third is the probability that the
atom is left unchanged by the interaction. It is convenient to
write this in matrix form@34#

p~t!5M ~t!p, ~2.11!

with a transition matrixM5M (1)1M ~2! composed of
two parts, representing that the outgoing atom is either in the
excited state~1! or in the ground state~2!. Explicitly we
have

M ~1 !nm5bqn11dn11,m1a~12qn11!dn,m ,

M ~2 !nm5aqndn,m111b~12qn!dn,m . ~2.12!

Notice that these formulas are completely classical and may
be simulated with a standard Markov process. The statistical
properties are not quantum mechanical as long as the incom-
ing atoms have a diagonal density matrix and we only mea-
sure elements in the diagonal. The only quantum mechanical
feature at this stage is the discreteness of the photon states,
which has important consequences for the correlation length
~see Sec. II C!. If the atomic density matrix has off-diagonal
elements, the above formalism breaks down. The reduced
cavity density matrix will then also develop off-diagonal el-
ements, even if initially it is diagonal. We shall not go fur-
ther into this question here~see, for example, Refs.@43–45#!.

C. The lossless cavity

The above discrete master equation~2.10! describes the
pumping of a lossless cavity with a beam of atoms. Afterk
atoms have passed through the cavity, its state has become
Mkp. In order to see whether this process may reach statis-
tical equilibrium fork→` we write Eq.~2.10! in the form

pn~t!5pn1Jn112Jn , ~2.13!

whereJn52aqnpn211bqnpn . In statistical equilibrium we
must haveJn115Jn , and the common valueJ5Jn for all n
can only be zero sincepn , and thereforeJ, has to vanish for
n→`. It follows that this can only be the case fora,b, i.e.,
a,0.5. There must thus be fewer than 50% excited atoms in
the beam, otherwise the lossless cavity blows up. Ifa,0.5,
the cavity will reach an equilibrium distribution of the form
of a thermal distribution for an oscillator pn
5(12a/b)(a/b)n. The statistical equilibrium may be shown
to be stable, i.e., that all nontrivial eigenvalues of the matrix
M are real and smaller than 1.

D. The dissipative cavity

A single oscillator interacting with an environment having
a huge number of degrees of freedom, for example a heat
bath, dissipates energy according to the well-known damping
formula ~see, for example,@46,47#!

drC
dt

5 i @rC ,va* a#2
1

2
g~nb11!

3~a* arC1rCa* a22arCa* !

2
1

2
gnb~aa* rC1rCaa*22a* rCa!, ~2.14!

wherenb is the average environment occupation number at
the oscillator frequency andg is the decay constant. This
evolution also conserves diagonality, so we have for any
diagonal cavity state

1

g

dpn
dt

52~nb11!@npn2~n11!pn11#

2nb@~n11!pn2npn21#, ~2.15!

which of course conserves probability. The right-hand side
may as for Eq. ~2.13! be written as Jn112Jn with
Jn5(nb11)npn2nbnpn21 and the same arguments as
above lead to a thermal equilibrium distribution with

pn5
1

11nb
S nb
11nb

D n. ~2.16!

E. The discrete master equation

We now take into account both pumping and damping.
Let the next atom arrive in the cavity after a timeT@t.
During this interval the cavity damping is described by Eq.
~2.15!, which we shall write in the form

dp

dt
52gLCp, ~2.17!
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whereLC is the cavity decay matrix from above

~LC!nm5~nb11!@ndn,m2~n11!dn11,m#

1nb@~n11!dn,m2ndn21,m#. ~2.18!

The statistical state of the cavity when the next atom arrives
is thus given by

p~T!5e2gLCTM ~t!p. ~2.19!

In using the full intervalT and notT2t we allow for the
decay of the cavity in the interaction time, although this de-
cay is not properly included with the atomic interaction~for
a correct treatment see Appendix A!.

This would be the master equation describing the evolu-
tion of the cavity if the atoms in the beam arrived with defi-
nite and known intervals. More commonly, the time intervals
T between atoms are Poisson distributed according todP(T)
5exp(2RT)RdTwith an average time interval 1/R between
them. Averaging the exponential in Eq.~2.19! we get

^p~T!&T5Sp, ~2.20!

where

S5
1

11LC /N
M , ~2.21!

andN5R/g is the dimensionless pumping rate already in-
troduced.

Implicit in the above consideration is the lack of knowl-
edge of the actual value of the atomic state after the interac-
tion. If we know that the state of the atom iss56 after the
interaction, then the average operator that transforms the
cavity state is instead

S~s!5~11LC /N!21M ~s!, ~2.22!

with M (s) given by Eq.~2.12!.
Repeating the process for a sequence ofk unobserved

atoms we find that the initial probability distributionp be-
comesSkp. In the general case this Markov process con-
verges towards a statistical equilibrium state satisfyingSp
5p, which has the solution@27,44# for n>1

pn5p0)
m51

n
nbm1Naqm

~11nb!m1Nbqm
. ~2.23!

The overall constantp0 is determined by( n50
` pn51.

III. CORRELATIONS

After studying stationary single-time properties of the mi-
cromaser, such as the average photon number in the cavity
and the average excitation of the outgoing atoms, we now
proceed to dynamical properties. Correlations between out-
going atoms are not only determined by the equilibrium dis-
tribution in the cavity but also by its approach to this equi-
librium. Short-time correlations, such as the correlation
between two consecutive atoms@30,34#, are difficult to de-
termine experimentally, because they require efficient obser-
vation of the states of atoms emerging from the cavity in
rapid succession. We propose instead to study and measure

long-time correlations, which do not impose the same strict
experimental conditions. These correlations turn out to have
a surprisingly rich structure~see Fig. 1! and reflect global
properties of the photon distribution. In this section we in-
troduce the concept of long-time correlations and present
two ways of calculating them numerically. In the following
sections we study the analytic properties of these correlations
and elucidate their relation to the dynamical phase structure,
especially those aspects that are poorly seen in the single-
time observables or short-time correlations.

A. Atomic beam observables

Let us imagine that we know the state of all the atoms as
they enter the cavity, for example, that they are all excited,
and that we are able to determine the state of each atom as it
exits from the cavity. We shall assume that the initial beam
is statistically stationary, described by the density matrix
~2.8!, and that we have obtained an experimental record of
the exit states of all the atoms after the cavity has reached
statistical equilibrium with the beam. The effect of nonper-
fect measuring efficiency has been considered in several pa-
pers @32–34# but we ignore that complication since it is a
purely experimental problem. From this record we may esti-
mate a number of quantities, for example, the probability of
finding the atom in a states56 after the interaction, where
we choose1 to represent the excited state and2 the ground
state. The probability may be expressed in the matrix form

P~s!5u0
T
M ~s!p0, ~3.1!

whereM (s) is given by Eq.~2.12! andp0 is the equilibrium
distribution~2.23!. The quantityu0 is a vector with all entries
equal to 1,u n

051, and represents the sum over all possible
final states of the cavity. In Fig. 2 we have compared the
behavior ofP~1! with some characteristic experiments.

SinceP~1!1P~2!51 it is sufficient to measure the aver-
age spin value

^s&5P~1 !2P~2 !. ~3.2!

FIG. 1. Comparison of theory~solid curve! and Monte Carlo
~MC! data ~dots! for the correlation lengthRj ~sample size 106

atoms!. The dotted and dashed curves correspond to subleading
eigenvalues~k2,3! of the matrixS. The parameters are those of the
experiment in Ref.@31#.
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Sinces251 this quantity also determines the variance to be
^s2&2^s&2512^s&2.

Correspondingly, we may define the joint probability for
observing the states of two atoms,s1 followed bys2, with k
unobserved atoms between them,

Pk~s1 ,s2!5u0
T
S~s2!S

kS~s1!p
0, ~3.3!

whereS andS(s) are defined in Eqs.~2.21! and~2.22!. The
joint probability of finding two consecutive excited outcom-
ing atoms,P0~1,1!, was calculated in@30#. It is worth no-
ticing that sinceS5S(1)1S~2! and Sp05p0 we have

(s1
Pk(s1 ,s2)5P(s2). Since we also haveu0

T
L5u0

T
(M

21)50 we find likewise that u0
T
S5u0

T
so that

(s2
Pk(s1 ,s2)5P(s1). Combining these relations we derive

thatPk~1,2!5Pk~2,1!, as expected. Due to these relations
there is essentially only one two-point function, namely, the
‘‘spin-spin’’ covariance function

^ss&k5 (
s1 ,s2

s1s2Pk~s1 ,s2!

5Pk~1,1 !1Pk~2,2 !

2Pk~1,2 !2Pk~2,1 !

5124Pk~1,2 !. ~3.4!

From this we derive the properly normalized correlation
function

g k
A5

^ss&k2^s&2

12^s&2
, ~3.5!

which satisfies21<g k
A<1.

At large times, whenk→`, the correlation function is in
general expected to decay exponentially, and we define the
atomic beam correlation lengthjA by the asymptotic behav-
ior for largek.Rt,

g k
A;expS 2

k

RjA
D . ~3.6!

Here we have scaled withR, the average number of atoms
passing the cavity per unit of time, so thatjA is the typical
length of time that the cavity remembers previous pumping
events.

B. Cavity observables

In the context of the micromaser cavity, one relevant ob-
servable is the instantaneous number of photonsn, from
which we may form the average^n& and correlations in time.
The quantum state of light in the cavity is often characterized
by the Fano-Mandel quality factor@48#, which is related to
the fluctuations ofn through

Qf5
^n2&2^n&2

^n&
21. ~3.7!

This quantity vanishes for coherent~Poisson! light and is
positive for classical light.

In equilibrium there is a relation between the average
photon occupation number and the spin average in the
atomic beam, which is trivial to derive from the equilibrium
distribution

^n&5u0
T
n̂p05nb1NP~2 !5nb1N

12^s&
2

, ~3.8!

wheren̂ is a diagonal matrix representing the quantum num-
ber n. A similar but more uncertain relation between the
Mandel quality factor and fluctuations in the atomic beam
may also be derived@29#.

The covariance between the values of the photon occupa-
tion numberk atoms apart in equilibrium is easily seen to be
given by

^nn&k5u0
T
n̂Skn̂p0, ~3.9!

and again a normalized correlation function may be defined

gk
C5

^nn&k2^n&2

^n2&2^n&2
. ~3.10!

FIG. 2. Comparison ofP~1!512P~2!512^qn11& with ex-
perimental data of Ref.@21# for various probability distributions.
The Poisson distribution is defined in Eq.~2.5!, the thermal in Eq.
~2.16!, and the micromaser equilibrium distribution in Eq.~2.23!. In
the upper figure (N5R/g51) the thermal distribution agrees well
with the data and in the lower~N56! the Poisson distribution fits
the data best. It is curious that the data systematically seem to
deviate from the micromaser equilibrium distribution in the lower
figure.
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The cavity correlation lengthjC is defined by

gk
C;expS 2

k

RjC
D . ~3.11!

Since the same power of the matrixS is involved, both cor-
relation lengths are determined by the same eigenvalue, and
the two correlation lengths are therefore identical,
jA5jC5j, and we shall no longer distinguish between
them.

C. Monte Carlo determination of correlation lengths

Since the statistical behavior of the micromaser is a clas-
sical Markov process it is possible to simulate it by means of
Monte Carlo methods using the cavity occupation numbern
as stochastic variable.

A sequence of excited atoms is generated at Poisson-
distributed times and allowed to act onn according to the
probabilities given by Eq.~2.2!. In these simulations we have
for simplicity chosena51 andb50. After the interaction the
cavity is allowed to decay during the waiting time until the
next atom arrives. The action of this process on the cavity
variablen is simulated by means of the transition probabili-
ties read off from the dissipative master equation~2.15! us-
ing a suitably small time stepdt. The states of the atoms in
the beam are determined by the pumping transitions and the
atomic correlation function may be determined from this se-
quence of spin values by making suitable averages after the
system has reached equilibrium. Finally the correlation
lengths may be extracted numerically from the Monte Carlo
data.

This extraction is, however, limited by noise due to the
finite sample size which in our simulation is 106 atoms. In
regions where the correlation length is large, it is fairly easy
to extract it by fitting to the exponential decay, whereas it is
more difficult in the regions where it is small~see Fig. 3!.
This accounts for the differences between the exact numeri-
cal calculations and the Monte Carlo data in Fig. 1. It is
expected that real experiments will face the same type of

problems in extracting the correlation lengths from real data.

D. Numerical calculation of correlation lengths

The micromaser equilibrium distribution is the solution of
Sp5p, whereS is the one-atom propagation matrix~2.21!,
so thatp0 is an eigenvector ofS from the right with eigen-
valuek051. The corresponding eigenvector from the left is
u0 and normalization of probabilities is expressed asu0

T
p0

51. The general eigenvalue problem concerns solutions to
Sp5kp from the right anduTS5kuT from the left. It is
shown below that the eigenvalues are nondegenerate, which
implies that there exists a spectral resolution of the form

S5(
l50

`

k l p
lul

T
, ~3.12!

with eigenvalueskl and eigenvectorspl and ul from right
and left, respectively. The long-time behavior of the correla-
tion function is governed by the next-to-leading eigenvalue
k1,1, and we see that

Rj52
1

lnk1
. ~3.13!

The eigenvalues are determined by the characteristic
equation det$S2k%50, which may be solved numerically.
This procedure is, however, not well defined for the infinite-
dimensional matrixS, and in order to evaluate the determi-
nant we have truncated the matrix to a large and finite-size
K3K with typical K.100. The explicit form ofS in Eq.
~2.21! is used, which reduces the problem to the calculation
of the determinant for a Jacobi matrix. Such a matrix van-
ishes outside the main diagonal and the two subleading di-
agonals on each side. It is shown in Sec. IV C that the eigen-
values found from this equation are indeed nondegenerate,
real, positive, and less than unity.

The next-to-leading eigenvalue is shown in Fig. 1 and
agrees very well with the Monte Carlo calculations. This
figure shows a surprising amount of structure and part of the
effort in the following will be to understand this structure in
detail.

It is possible to derive an exact sum rule for the reciprocal
eigenvalues~see Appendix B!, which yields the approximate
expression

j.11 (
n51

` S Pn~12Pn!

~11nb!npn
2
12@nb /~11nb!#

n

n D ,
~3.14!

when the subdominant eigenvalues may be ignored. Herepn
is the equilibrium distribution Eq.~2.23! andPn5( m50

n21Pm
is the cumulative probability. In Fig. 4 we compare the exact
numerical calculation and the result of the sum rule, which is
much less time consuming to compute.

IV. ANALYTIC PRELIMINARIES

In order to tackle the task of determining the phase struc-
ture in the micromaser we need to develop some mathemati-
cal tools. The dynamics can be formulated in two different

FIG. 3. Monte Carlo data~with 106 simulated atoms! for the
correlation as a function of the separationk.Rt between the atoms
in the beam fort525 ms ~lower data points! andt550 ms ~upper
data points!. In the latter case the exponential decay at large times is
clearly visible, whereas it is hidden in the noise in the former. The
parameters are those of the experiment described in Ref.@31#.
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ways which are equivalent in the large flux limit. Both are
related to Jacobi matrices describing the stochastic process.
Many characteristic features of the correlation length are re-
lated to scaling properties forN→`, and require a detailed
analysis of the continuum limit. Here we introduce some of
the concepts that are used in the main analysis in Sec. V.

A. Continuous master equation

When the atoms have Poisson-distributed arrival times it
is possible to formulate the problem as a differential equation
@44#. Each atom has the same probabilityRdt of arriving in
an infinitesimal time intervaldt. Provided the interaction
with the cavity takes less time than this interval, i.e.,t!dt,
we may consider the transition to be instantaneous and write
the transition matrix asRdt(M21) so that we get

dp

dt
52gLCp1R~M21!p[2gLp, ~4.1!

whereL5LC2N(M21). This equation obviously has the
solution

p~ t !5e2gLtp. ~4.2!

Explicitly we have

Lnm5~nb11!@ndn,m2~n11!dn11,m#

1nb@~n11!dn,m2ndn,m11#1N@~aqn111bqn!dn,m

2aqndn,m112bqn11dn11,m#, ~4.3!

and

1

g

dpn
dt

52~nb11!@npn2~n11!pn11#

2nb@~n11!pn2npn21#2N@~aqn111bqn!pn

2aqnpn212bqn11pn11#. ~4.4!

The equilibrium distribution may be found by the same
technique as before, writing the right-hand side of Eq.~4.4!
asJn112Jn with

Jn5@~nb11!n1Nbqn#pn2~nbn1Naqn!pn21 ,
~4.5!

and settingJn50 for all n. The equilibrium distribution is
clearly given by the same expression~2.23! as in the discrete
case.

B. Relation to the discrete case

Even if the discrete and continuous formulations have the
same equilibrium distribution, there is a difference in the
dynamical behavior of the two cases. In the discrete case the
basic propagation matrix isSk, whereS5(11LC/N)

21M ,
whereas it is exp~2gLt! in the continuous case. For high
pumping rateN we expect the two formalisms to coincide,
when we identifyk.Rt. For the long-time behavior of the
correlation functions this implies that the next-to-leading ei-
genvaluesk1 of S and l1 of L must be related by
1/j5gl1.2R lnk1.

To prove this, let us compare the two eigenvalue prob-
lems. For the continuous case we have

@LC2N~M21!#p5lp, ~4.6!

whereas in the discrete case we may rewriteSp5kp to be-
come

S LC2
N

k
~M21! D p5NS 1k21D p. ~4.7!

Let a solution to the continuous case bep(N) with eigen-
valuel(N), making explicit the dependence onN. It is then
obvious thatp(N/k) is a solution to the discrete case with
eigenvaluek determined by

lSNk D5NS 1k21D . ~4.8!

As we shall see below, forN@1 the next-to-leading eigen-
valuel1 stays finite or goes to zero, and hencek1→1 at least
as fast as 1/N. Using this result it follows that the correlation
length is the same toO(1/N) in the two formalisms.

C. The eigenvalue problem

The transition matrix L truncated to size (K11)
3(K11) is a special kind of asymmetric Jacobi matrix

FIG. 4. Comparison of the sum in Eq.~3.14! over reciprocal
eigenvalues~dotted curve! with numerically determined correlation
length ~solid curve! for the same parameters as in Fig. 1. The dif-
ference between the curves is entirely due to the subdominant ei-
genvalues that have not been taken into account here.
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LK55
A01B0 2B1 0 0 •••

2A0 A11B1 2B2 0 •••

0 2A1 A21B2 2B3

A A A A A

2AK22 AK211BK21 2BK

••• 0 2AK21 AK1BK

6 , ~4.9!

where

An5nb~n11!1Naqn11 ,

Bn5~nb11!n1Nbqn . ~4.10!

Notice that the sum over the elements in every column van-
ishes, except for the first and the last, for which the sums,
respectively, take the valuesB0 andAK . In our case we have
B050, butAK is nonzero. ForB050 it is easy to see~using
row manipulation! that the determinant becomesA0A1 ...AK
and obviously diverges in the limit ofK→`. Hence the trun-
cation is absolutely necessary. All the coefficients in the
characteristic equation diverge, if we do not truncate. In or-
der to secure that there is an eigenvaluel50, we shall force
AK50 instead of the value given above. This means that the
matrix is not just truncated but actually changed in the last
diagonal element. Physically this secures that there is no ex-
ternal input to the process from cavity occupation numbers
aboveK, a not unreasonable requirement.

An eigenvector to the right satisfies the equation
LKp5lp, which takes the explicit form

2An21pn211~An1Bn!pn2Bn11pn115lpn .
~4.11!

Since we may solve this equation successively for
p1 ,p2 ,...,pK given p0, it follows that all eigenvectors are
nondegenerate. The characteristic polynomial obeys the re-
cursive equation

det~LK2l!5~AK1BK2l!det~LK212l!

2AK21BKdet~LK222l!, ~4.12!

and this is also the characteristic equation for a symmetric
Jacobi matrix with off-diagonal elementsCn52AAn21Bn.
Hence the eigenvalues are the same and therefore all
real and, as we shall see below, non-negative~see in
this context Ref.@55#!. They may therefore be ordered
05l0,l1,•••,lK . The equilibrium distribution~2.23! cor-
responds tol50 and is given by

pn
05p0

0)
m51

n
Am21

Bm
5p0

0 A0A1•••An21

B1B2•••Bn
for n51,2,...,K.

~4.13!

Notice that this expression does not involve the vanishing
valuesB05AK50.

Corresponding to each eigenvectorp to the right there is
an eigenvectoru to the left, satisfyinguTLK5luT, which in
components reads

An~un2un21!1Bn~un2un11!5lun . ~4.14!

For l50 we obviously haveu n
051 for all n and the scalar

productu0•p051. The eigenvector to the left is trivially re-
lated to the eigenvector to the right via the equilibrium dis-
tribution

pn5pn
0un . ~4.15!

The full set of eigenvectors to the left and to the right
$ul ,pl ul50,1,2,...,K% may now be chosen to be orthonormal
ul•pl 85d l ,l 8, and is, of course, complete since the dimension
K is finite.

It is useful to express this formalism in terms of averages
over the equilibrium distribution̂ f n&05( n50

K f np n
0. Then

using Eq.~4.15! we have, for an eigenvector withl.0, the
relations

^un&050,

^un
2&051,

^unun8&050 for lÞl8. ~4.16!

Thus the eigenvectors withl.0 may be viewed as uncorre-
lated stochastic functions ofn with zero mean and unit vari-
ance.

Finally, we rewrite the eigenvalue equation to the right in
the form oflpn5Jn2Jn11 with

Jn5Bnpn2An21pn215pn
0Bn~un2un21!. ~4.17!

Using the orthogonality we then find

l5 (
n50

K

un~Jn2Jn11!5^Bn~un2un21!
2&0 , ~4.18!

which incidentally proves that all eigenvalues are non-
negative. It is also evident that an eigenvalue is built up from
the nonconstant parts, i.e., the jumps ofun .

D. Effective potential

It is convenient to introduce an effective potentialVn ,
first discussed by Filipowiczet al. @27# in the continuum
limit, by writing the equilibrium distribution~2.23! in the
form

pn5
1

Z
e2NVn, ~4.19!
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with

Vn52
1

N (
m51

n

ln
nbm1Naqm

~11nb!m1Nbqm
~4.20!

for n>1. The value of the potential forn50 may be chosen
arbitrarily, for exampleV050, because of the normalization
constant

Z5 (
n50

`

e2NVn. ~4.21!

It is, of course, completely equivalent to discuss the shape of
the equilibrium distribution and the shape of the effective
potential. Our definition ofVn differs from the one intro-
duced in Refs.@27, 40# in the sense that ourVn is exact while
the one in@27,40# was derived from a Fokker-Planck equa-
tion in the continuum limit.

E. Semicontinuous formulation

Another way of making analytical methods, such as the
Fokker-Planck equation, easier to use is to rewrite the for-
malism~exactly! in terms of the scaled photon-number vari-
ablex and the scaled time parameteru, defined by@27#

x5
n

N
,

u5gtAN. ~4.22!

Notice that the variablex and notn is the natural variable
when observing the field in the cavity by means of the
atomic beam@see~3.9!#. DefiningDx51/N and introducing
the scaled probability distributionp(x)5Npn the conserva-
tion of probability takes the form

(
x50

`

Dxp~x!51, ~4.23!

where the sum extends over all discrete values ofx in the
interval. Similarly the equilibrium distribution takes the form

p0~x!5
1

Zx
e2NV~x!, ~4.24!

with the effective potential given as an ‘‘integral’’

V~x!5 (
x8.0

x

Dx8D~x8!, ~4.25!

with ‘‘integrand’’

D~x!52 ln
nbx1aq~x!

~11nb!x1bq~x!
. ~4.26!

The transition probability function isq(x)5sin2 uAx and the
normalization constant is given by

Zx5
Z

N
5 (

x50

`

Dxe2NV~x!. ~4.27!

In order to reformulate the master equation~4.4! it is con-
venient to introduce the discrete derivativesD1f (x)
5 f (x1Dx)2 f (x) andD2f (x)5 f (x)2 f (x2Dx). Then we
find

1

g

dp~x!

dt
5

D1

Dx
J~x!, ~4.28!

with

J~x!5@x2~a2b!q~x!#p~x!1
1

N
@nbx1aq~x!#

D2

Dx
p~x!.

~4.29!

For the general eigenvector we definep(x)5Npn and write
it asp(x)5p0(x)u(x) with u(x)5un and find the equations

lp~x!52
D1

Dx
J~x!, ~4.30!

and

J~x!5
1

N
p0~x!@~11nb!x1bq~x!#

D2

Dx
u~x!. ~4.31!

Equivalently the eigenvalue equation foru(x) becomes

lu~x!5@x2~a2b!q~x!#
D2

Dx
u~x!

2
1

N

D1

Dx F @nbx1aq~x!#
D2

Dx
u~x!G . ~4.32!

As before we also have

^u~x!&050,

^u~x!2&051, ~4.33!

where now the average overp0(x) is defined as
^ f (x)&05(xDx f(x)p

0(x). As before we may also express
the eigenvalue as an average,

l5
1

N K @~11nb!x1bq~x!#S D2u~x!

Dx D 2L
0

. ~4.34!

Again it should be emphasized that all these formulas are
exact rewritings of the previous ones, but this formulation
permits easy transition to the continuum case, wherever ap-
plicable.

F. Extrema of the continuous potential

The quantityD(x) in Eq. ~4.26! has a natural continuation
to all real values ofx as a smooth differentiable function.
The condition for smoothness is that the change in the argu-
mentuAx between two neighboring values,x andx1Dx, is
much smaller than 1, oru!2NAx. Hence forN→` the func-
tion is smooth everywhere and the sum in Eq.~4.25! may be
replaced by an integral

V~x!5E
0

x

dx8D~x8!, ~4.35!
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so thatD(x)5V8(x). In Fig. 5 we illustrate the typical be-
havior of the potential and the corresponding photon-number
distribution in the first critical region~see Sec. V F!. Notice
that the photon-number distribution exhibits Schleich-
Wheeler oscillations typical of a squeezed state@49#.

The extrema of this potential are located at the solutions
to q(x)5x; they may be parametrized in the form

x5~a2b!sin2f,

u5
1

Aa2b

f

usinfu
, ~4.36!

with 0<f,`. These formulas map out a multibranched
function x~u! with critical points where the derivative

D8~x!5V9~x!5
@a1nb~a2b!#@q~x!2xq8~x!#

@~11nb!x1bq~x!#@nbx1aq~x!#
~4.37!

vanishes, which happens at the values off satisfying
f5tanf. This equation has an infinity of solutions,f5fk ,
k50,1, . . . ,with f050 and to a good approximation

fk5~2k11!
p

2
2

1

~2k11!
p

2

1OS S ~2k11!
p

2 D 23D
~4.38!

for k51,2, . . . , andeach of these branches is double valued,
with a sub-branch corresponding to a minimum~D8.0! and
another corresponding to a maximum~D8,0!. Since there
are alwaysk11 minima andk maxima, we denote the
minima x2k~u! and the maximax2k11~u!. Thus the minima
have even indices and the maxima have odd indices. They
are given as a function ofu through Eq.~4.36! whenf runs
through certain intervals. Thus, for the minima ofV(x), we
have

fk,f,~k11!p, uk,u,`,

a2b.x2k~u!.0, k50,1,. . . , ~4.39!

and for the maxima

kp,f,fk , `.u.uk ,

0,x2k11~u!,a2b, k51,. . . . ~4.40!

Hereuk5fk /usinfkuAa2b is the value ofu for which the
kth branch comes into existence. Hence in the interval
uK,u,uK11 there are exactly 2K11 branches,
x0 ,x1 ,x2 ,...,x2K21,x2K, forming theK11 minima andK
maxima ofV(x). For 0,u,u051/Aa2b there are no ex-
trema.

This classification allows us to discuss the different pa-
rameter regimes that arise in the limit ofN→`. Each regime
is separated from the others by singularities and are thus
equivalent to the phases that arise in the thermodynamic
limit of statistical mechanics.

V. PHASE STRUCTURE

We shall from now on limit the discussion to the case of
initially completely excited atoms,a51, b50, which simpli-
fies the following discussion considerably.

The central issue in this paper is the phase structure of the
correlation length as a function of the parameteru. In the
limit of infinite atomic pumping rate,N→`, the statistical
system described by the master equation~2.10! has a number
of different dynamical phases, separated from each other by
singular boundaries in the space of parameters. We shall in
this section investigate the character of the different phases,
with special emphasis on the limiting behavior of the corre-
lation length. There turn out to be several qualitatively dif-
ferent phases within a range ofu close to experimental val-
ues. First, the thermal phase and the transition to the maser
phase atu51 have previously been discussed in terms of^n&
@27,44,40#. The new transition to the critical phase at
u1.4.603 is not revealed bŷn& and the introduction of the
correlation length as an observable is necessary to describe
it. In the large flux limit^n& and^(Dn)2& are only sensitive to
the probability distribution close to its global maximum. The
correlation length depends crucially also on local maxima
and the phase transition atu1 occurs when a new local maxi-
mum emerges. Atu.6.3 there is a phase transition in^n&

FIG. 5. Example of a potential with two minimax0, x2 and one
maximumx1 ~upper graph!. The rectangular curve represents the
exact potential~4.20!, whereas the continuous curve is given by Eq.
~4.25! with the summation replaced by an integral. The value of the
continuous potential atx50 has been chosen such as to make the
distance minimal between the two curves. In the lower graph the
corresponding probability distribution is shown.
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taking a discrete jump to a higher value. It happens when
there are two competing global minima in the effective po-
tential for different values ofn. At the same point the corre-
lation length reaches its maximum. In Fig. 6 we show the
correlation length in the thermal and maser phases, and in
Fig. 7 the critical phases, for various values of the pumping
rateN.

A. Empty cavity

When there is no interaction, i.e.,M51, or equivalently
qn50 for all n, the behavior of the cavity is purely thermal,
and then it is possible to find the eigenvalues explicitly. Let
us in this case write

LC5~2nb11!L32~11nb!L22nbL12 1
2 , ~5.1!

where

~L3!nm5~n1 1
2 !dnm ,

~L1!nm5ndn,m11 ,

~L2!nm5~n11!dn11,m . ~5.2!

These operators form a representation of the Lie algebra of
SU~1,1!

@L2 ,L1#52L3 , @L3 ,L6#56L6 . ~5.3!

It then follows that

LC5erL1e2~11nb!L2~L32
1
2 !e~11nb!L2e2rL1, ~5.4!

wherer5nb/(11nb). This proves thatLC has the same ei-
genvalue spectrum as the simple number operatorL32

1
2, i.e.,

ln5n for n50,1, . . . .SinceM51 for t50 this is a limiting
case for the correlation lengthsgjn51/ln51/n for u50.
From Eq.~4.8! we obtainkn51/(11n/N) in the noninter-
acting case. Hence in the discrete caseRjn521/lnkn.N/n
for N@n and this agrees with the values in Fig. 1 for
n51,2,3 neart50.

B. Thermal phase: 0<u<1

In this phase the natural variable isn, not x5n/N. The
effective potential has no extremum for 0,n,`, but is
smallest forn50. Hence forN→` it may be approximated
by its leading linear term everywhere in this region,

NVn5n ln
nb11

nb1u2
. ~5.5!

Notice that the slope vanishes foru51. The higher-order
terms play no role as long as 12u2@1/AN, and we obtain a
Planck distribution

pn
05

12u2

11nb
S nb1u2

11nb
D n, ~5.6!

with photon-number average

^n&5
nb1u2

12u2
, ~5.7!

which ~for u.0! corresponds to an increased temperature.
Thus the result of pumping the cavity with the atomic beam
is simply to raise its effective temperature in this region. The
mean occupation number^n& does not depend on the dimen-
sionless pumping rateN ~for sufficiently largeN!.

The variance is

sn
25^n2&2^n&25^n&~11^n&!5

~11nb!~nb1u2!

~12u2!2
,

~5.8!

and the first nonleading eigenvector is easily shown to be

un5
n2^n&

sn
, ~5.9!

which indeed has the form of a univariate variable. The cor-
responding eigenvalue is found from Eq.~4.34! l1512u2, or

j5
1

12u2
. ~5.10!

FIG. 6. The correlation length in the thermal and maser phases
as a function ofu for various values ofN. The dotted curves are the
limiting value forN5`. The correlation length grows asAN near
u51 and exponentially foru.u1.4.603.

FIG. 7. The logarithm of the correlation length as a function of
u for various values ofN ~10,20, . . . ,100!. We havenb50.15 here.
Notice that foru.u1 the logarithm of the correlation length grows
linearly with N for large N. The vertical lines indicateu051,
u154.603,u257.790,u3510.95, andu4514.10.
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Thus the correlation length diverges atu51 ~for N→`!.

C. First critical point: u51

Around the critical point atu51 there is competition be-
tween the linear and quadratic terms in the expansion of the
potential for smallx,

V~x!5x ln
nb11

nb1u2
1
1

6
x2

u4

u21nb
1O~x3!. ~5.11!

Expanding inu 221 we get

V~x!5
12u2

11nb
x1

1

6~11nb!
x21O„x3,~u221!2….

~5.12!

Near the critical point, i.e., for~12u2!AN!1, the quadratic
term dominates, so the average value^x& as well as the width
sx becomes ofO~1/AN! instead ofO~1/N!.

Let us therefore introduce two scaling variablesr anda
through

x5rA3~11nb!

N
, u2215aA11nb

3N
, ~5.13!

so that the probability distribution in terms of these variables
becomes a Gaussian on the half line, i.e.,

p0~r !5
1

Zr
e~r2a!2/2, ~5.14!

with

Zr5E
0

`

dr e~r2a!2/25Ap

2 F11erf S a

&
D G . ~5.15!

From this we obtain

^r &5a1
d lnZr
da

, s r
25

d^r &
da

. ~5.16!

For a50 we have explicitly

^x&5A12~11nb!

pN
, sx

25
6~nb11!

N S 122
1

p D . ~5.17!

This leads to the following equation foru(r ):

ru5r ~r2a!
du

dr
2

d

dr F r dudr G , ~5.18!

where

r5lA 3N

11nb
5 K r S dudr D 2L

0

. ~5.19!

This eigenvalue problem has no simple solution.
We know, however, thatu(r ) must change sign once, say

at r5r 0 . In the neighborhood of the sign change we have
u.r2r 0 and, inserting this into~5.18! we get r 05(a
1A41a2)/2 andr5A41a2 such that

j5A 3N

~11nb!~41a2!
. ~5.20!

D. Maser phase: 1<u<u1.4.603

In the region above the transition atu51 the mean occu-
pation number̂ n& grows proportionally with the pumping
rateN, so in this region the cavity acts as a maser. There is
a single minimum of the effective potential described by the
branchx0~u!, defined by the region 0,f,p in Eq. ~4.36!.
We find forN@1 to a good approximation in the vicinity of
the minimum a Gaussian behavior

p0~x!5ANV9~x0!

2p
e2~N/2!V9~x0!~x2x0!2, ~5.21!

where

V9~x0!5
12q8~x0!

x0~11nb!
. ~5.22!

Hence for~u221!AN@1 we have a mean value^x&05x0 and
variances x

251/NV9(x0). To find the next-to-leading eigen-
value in this case we introduce the scaling variabler
5ANV9(x0)(x2x0), which has zero mean and unit variance
for largeN. Then Eq.~4.32! takes the form~in the continuum
limit N→`!

lu5@12q8~x0!#S r dudr2
d2u

dr2 D . ~5.23!

This is the differential equation for Hermite polynomials.
The eigenvalues areln5n[12q8(x0)], n50,1, . . . , and
grow linearly withn. This may be observed in Fig. 3. The
correlation length becomes

j5
1

12q8~x0!
5

1

12f cotf
for 0,f,p. ~5.24!

As in the thermal phase, the correlation length is independent
of N ~for largeN!.

E. Mean field calculation

We shall now use a mean field method to get an expres-
sion for the correlation length in both the thermal and maser
phases and in the critical region. We find from the time-
dependent probability distribution~4.4! the following exact
equation for the average photon occupation number:

1

g

d^n&
dt

5N^qn11&1nb2^n&, ~5.25!

or with Dx51/N

1

g

d^x&
dt

5^q~x1Dx!&1nbDx2^x&. ~5.26!

We shall ignore the fluctuations ofx around its mean value
and simply replace this by
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1

g

d^x&
dt

5q~^x&1Dx!1nbDx2^x&. ~5.27!

This is certainly a good approximation in the limit ofN→`
for the maser phase because the relative fluctuationsx/^x&
vanishes asO~1/AN! here, but it is of dubious validity in the
thermal phase, where the relative fluctuations are indepen-
dent ofN. Nevertheless, we find numerically that the mean
field description is rather precise in the whole interval
0,u,u1.

The fixed pointx0 of the above equation satisfies the
mean field equation

x05q~x01Dx!1nbDx, ~5.28!

which may be solved in parametric form as

x05sin2f1nbDx,

u5
f

Asin2f1~11nb!Dx
. ~5.29!

We notice here that there is a maximum region of existence
for any branch of the solution. The maximum is roughly
given byuk

max5(k11)pAN/(11nb).
For small perturbationŝx&5x01e we find the equation

of motion

1

g

de

dt
52@12q8~x01Dx!#e, ~5.30!

from which we estimate the leading eigenvalue

l512q8~x01Dx!512
f sinf cosf

sin2f1~11nb!Dx
.

~5.31!

Notice thatl takes negative values in the unstable regions of
f. This eigenvalue does not vanish at the critical pointu51
which corresponds to

f.f05S 3~11nb!

N D 1/4, ~5.32!

but only reaches a small value

l.2A11nb
3N

, ~5.33!

which agrees exactly with the previously obtained result
~5.20!. Introducing the scaling variablea from ~5.13! and
definingc5~f/f0!

2 we easily get

a5~c221!/c,

r5c,

r5~c211!/c, ~5.34!

and after eliminatingc

r5 1
2 ~a1Aa214!,

r5A41a2, ~5.35!

which agrees with the previously obtained results.

F. The first critical phase: 4.603.u1<u<u2.7.790

We now turn to the first phase in which the effective
potential has two minima (x0 ,x2) and a maximum~x1! in
between~see Fig. 5 in Sec. IV F!. In this case there is com-
petition between the two minima separated by the barrier and
for N→` this barrier makes the relaxation time to equilib-
rium exponentially long. Hence we expectl1 to be exponen-
tially small for largeN ~see Fig. 7!,

l15Ce2hN, ~5.36!

whereC andh are independent ofN. It is the extreme small-
ness of the subleading eigenvalue that allows us to calculate
it with high precision.

For largeN the probability distribution consists of two
well-separated narrow maxima, each of which is approxi-
mately a Gaussian. We define thea priori probabilities for
each of the peaks

P05 (
0<x,x1

Dxp0~x!5
Z0
Z
, ~5.37!

and

P25 (
x1<x,`

Dxp0~x!5
Z2
Z
. ~5.38!

TheZ factors are

Z05 (
x50

x1

Dxe2NV~x!.e2NV0A 2p

NV09
, ~5.39!

and

Z25 (
x5x1

`

Dxe2NV~x!.e2NV2A 2p

NV29
, ~5.40!

with Z5Z01Z2 . The probabilities satisfy of course
P01P251 and we have

p0~x!5P0p0
0~x!1P2p2

0~x!, ~5.41!

wherep0,2
0 are individual probability distributions with maxi-

mum atx0,2. The overlap error in these expressions vanishes
rapidly for N→`, because the ratioP0/P2 either converges
towards 0 or` for V0ÞV2 . The transition from one peak
being the highest to the other peak being the highest occurs
when the two maxima coincide, i.e., atu.7.22 atN510,
whereas forN5` it happens atu.6.66. At this point the
correlation length is also maximal.

Using this formalism, many quantities may be evaluated
in the limit of largeN. Thus, for example,

^x&05P0x01P2x2 , ~5.42!

and
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sx
25Š~x2^x&0!

2
‹05s0

2P01s2
2P21~x02x2!

2P0P2 .
~5.43!

Now there is no direct relation between the variance and the
correlation length.

Consider now the expression~4.30!, which shows that
sincel1 is exponentially small we have an essentially con-
stantJn , except near the maxima of the probability distribu-
tion, i.e., near the minima of the potential. Furthermore since
the right eigenvector ofl1 satisfies(xp(x)50, we have
05J(0)5J(`) so that

J~x!.H 0, 0,x,x0
J1 , x0,x,x2
0, x2,x,`.

~5.44!

This expression is more accurate away from the minima of
the potential,x0 andx2.

Now it follows from Eq. ~4.31! that the left eigenvector
u(x) of l1 must be constant, except near the minimumx1 of
the probability distribution, where the derivative could be
sizable. Se we conclude thatu(x) is constant away from the
maximum of the potential. Hence we must approximately
have

u~x!.Hu0 , 0,x,x1
u2 , x1,x,`. ~5.45!

This expression is more accurate away from the maximum of
the potential.

We may now relate the values ofJ andu by summing Eq.
~4.30! from x1 to infinity,

J15J~x1!5l1 (
x5x1

`

Dxp0~x!u~x!.l1P2u2 . ~5.46!

From Eq. ~4.31! we get by summing over the interval be-
tween the minima

u22u05
NJ1
11nb

(
x5x0

x2

Dx
1

xp0~x!
. ~5.47!

The inverse probability distribution has forN→` a sharp
maximum at the maximum of the potential. Let us define

Z15 (
x5x0

x2

Dx
1

x
eNV~x!.

1

x1
eNV1A 2p

N~2V19!
. ~5.48!

Then we find

u22u05
NZZ1J1
11nb

5
Nl1Z1Z2u2

11nb
. ~5.49!

But u(x) must be univariate, i.e.,

u0P01u2P250,

u0
2P01u2

2P251, ~5.50!

from which we get

u052AP2

P0
52AZ2

Z0
,

u25AP0

P2
5AZ0

Z2
. ~5.51!

Inserting the above solution we may solve forl1,

l15
11nb
N

Z01Z2
Z0Z1Z2

, ~5.52!

or more explicitly

l15
x1~11nb!

2p
A2V19~AV09e

2N~V12V0!1AV29e
2N~V12V2!!.

~5.53!

Finally we may read off the coefficientsh andC from Eq.
~5.36!. We get

h5 HV12V0 for V0.V2

V12V2 for V2.V0 ,
~5.54!

and

C5
x1~11nb!

2p
A2V193HAV09 for V0.V2

AV29 for V2.V0 .
~5.55!

This expression is nothing but the result of a barrier pen-
etration of a classical statistical process@50#. We have de-
rived it in detail in order to get all the coefficients right.

It is interesting to check numerically how well Eq.~5.53!
actually describes the correlation length. The coefficienth is
given by Eq.~5.54!, and we have numerically computed the
highest barrier from the potentialV(x) and compared it with
an exact calculation in Fig. 8. The exponenth is extracted by
comparing two values of the correlation length,j70 andj90,
for large values ofN ~70 and 90!, where the difference in the
prefactorC should be unimportant. The agreement between
the two calculations is excellent when we use the exact po-
tential. As a comparison we also calculate the barrier height
from the approximative potential in the Fokker-Planck equa-
tion derived in@27,28#. We find a substantial deviation from

FIG. 8. Comparing the barrier height from the potentialV(x)
with the exact correlation length and the barrier from an approxi-
mate Fokker-Planck formula.
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the exact value in that case. It is carefully explained in
@27,28# why the Fokker-Planck potential cannot be expected
to give a quantitatively correct result for smallnb . The exact
result ~solid line! has some extra features atu51 and just
below u5u1.4.603, due to finite-size effects.

When the first subleading eigenvalue goes exponentially
to zero, or equivalently the correlation length grows expo-
nentially, it becomes important to know the density of eigen-
values. If there is an accumulation of eigenvalues around 0,
the long-time correlation cannot be determined by only the
first subleading eigenvalue. It is quite easy to determine the
density of eigenvalues simply by computing them numeri-
cally.

In Fig. 9 we show the first seven subleading eigenvalues
for N550 andnb50.15. It is clear that at the first critical
point after the maser phase~u5u1! there is only one eigen-
value going to zero. At the next critical phase~u5u2! there is
one more eigenvalue coming down, and so on. We find that
there is only one exponentially small eigenvalue for each
new minimum in the potential, and thus there is no accumu-
lation of eigenvalues around 0.

VI. EFFECTS OF VELOCITY FLUCTUATIONS

The time it takes an atom to pass through the cavity is
determined by a velocity filter in front of the cavity. This
filter is not perfect and it is relevant to investigate what a
spread in flight time implies for the statistics of the interac-
tion between cavity and beam. To be specific, we consider
the flight time as an independent stochastic variable. Again,
it is more convenient to work with the rescaled variableu,
and we denote the corresponding stochastic variable byq. In
order to get explicit analytic results we choose the following
probability distribution for positiveq:

f ~q,a,b!5
ba11

G~a11!
qae2bq, ~6.1!

with b5u/su
2 and a5u2/su

221, so that ^q&5u and
^~q2u!2&5su

2 . Other choices are possible, but are not ex-
pected to change the overall qualitative picture. The discrete
master equation~2.19! for the equilibrium distribution can be
averaged to yield

^p~ t1T!&5e2gLCT^M ~q!&^p~ t !&. ~6.2!

The factorization is due to the fact thatp(t) only depends
on q for the preceding atoms, and that all atoms are statisti-
cally independent. The effect is simply to average
q~q!5sin2~qAx! in M ~q!, and we get

^q&5
1

2 H 12S 11
4xsu

4

u2 D 2u2/2su
2

3cosF u2

su
2 arctanS 2Axsu

2

u D G J . ~6.3!

This averaged form ofq~u!, which depends on the two inde-
pendent variablesu/su anduAx, enters in the analysis of the
phases in exactly the same way as before. In the limitsu→0
we regain the originalq~u!, as we should. For very largesu
and fixedu, ^q& approaches zero.

A. Revivals and prerevivals

The phenomenon of quantum revival is an essential fea-
ture of the microlaser system~see @15–19#, and @36–38#!.
The revivals are characterized by the reappearance of
strongly oscillating structures in the excitation probability of
an outgoing atom which is given by Eq.~3.1!:

P~1 !5u0
T
M ~1 !p05(

n
@12qn11~u!#pn

0, ~6.4!

wherep n
0 is the photon distribution~2.23! in the cavity be-

fore the atom enters. Revivals occur when there is a reso-
nance between the period inqn and the discreteness inn
@38#. If the photon distribution in the cavity has a sharp peak
at n5n0 with a position that does not change appreciably
whenu changes, as, for example, for a fixed Poisson distri-
bution, then it is easy to see that the first revival becomes
pronounced in the region ofu rev.2pAn0N. For the equilib-
rium distribution without any spread in the velocities we do
not expect any dramatic signature of revival, the reason be-
ing that the peaks in the equilibrium distributionp n

0~u! move
rapidly with u. In this context it is also natural to study the
short-time correlation between two consecutive atoms, or the
probability of finding two consecutive atoms in the excited
level @30#. This quantity is given by

P0~1,1 !5u0
T
M ~1 !~11LC /N!21M ~1 !p0

5(
n,m

@12qn11~u!#~11LC /N!nm
21

3@12qm11~u!#pm
0 , ~6.5!

defined in Eq.~3.3!. In Appendix C we give an analytic
expression for the matrix elements of~11LC/N!21. In Fig.
10 we presentP~1! andP0~1,1! for typical values ofN and
nb .

If we on the other hand smear out the equilibrium distri-
bution sufficiently as a function ofu, revivals will again
appear. The experimental situation we envisage is that the
atoms are produced with a certain spread in their velocities.

FIG. 9. The first seven subleading eigenvalues forN550 and
nb50.15.
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The statistically averaged stationary photon distribution de-
pends on the spread. After the passage through the cavity we
measure both the excitation level and the speed of the atom.
There is thus no averaging in the calculation ofP~1! and
P0~1,1!, but these quantities now also depend on the actual
valueq for each atom. For definiteness we select only those
atoms that fall in a narrow range around the average valueu,
in effect putting in a sharp velocity filter after the interaction.
The result for an averaged photon distribution is presented in
Fig. 10~lower graph!, where clear signs of revival are found.
We also observe that inP0~1,1! there are prerevivals, oc-
curring for a value ofu half as large as for the usual revivals.
Its origin is obvious since inP0~1,1! there are terms con-
tainingq n

2 that vary with the double of the frequency ofqn .

B. Phase diagram

The different phases discussed in Sec. V depend strongly
on the structure of the effective potential. Averaging overu
can easily change this structure and the phases. For instance,
averaging with largesu would typically wash out some of
the minima and lead to a different critical behavior. We shall
determine a two-dimensional phase diagram in the param-
etersu andsu by finding the lines where new minima occur
and disappear. They are determined by the equations

^q&5x,

d^q&
dx

51. ~6.6!

The phase boundary between the thermal and the maser
phase is determined by the effective potential for smallx.
The condition u251 is now simply replaced by
^q2&5u21su

251, which also follows from the explicit form
of ^q& in Eq. ~6.3!. The transitions from the maser phase to
the critical phases are determined numerically and presented
in Fig. 11. The first line starting fromu.4.6 shows where
the second minimum is about to form, but exactly on this
line it is only an inflection point. At the pointa about
su.1.3 it disappears, which occurs when the second mini-
mum fuses with the first minimum. From the cusp at pointa
there is a new line~dashed! showing where the first mini-
mum becomes an inflection point. Above the cusp at pointa
there is only one minimum. Going along the line from point
b to c we thus first have one minimum, then a second mini-
mum emerges, and finally the first minimum disappears be-
fore we reach pointc. Similar things happen at the other
cusps, which represent the fusing points for other minima.
Thus solid lines show where a new minimum emerges for
largen (;N) asu increases, while dashed lines show where
a minimum disappears for smalln assu increases. We have
also indicated~by dotted lines! the first-order maser transi-
tions where the two dominant minima are equally deep.
These are the lines wherej and Qf have peaks and̂n&
makes a discontinuous jump.

VII. FINITE-FLUX EFFECTS

So far, we have mainly discussed characteristics of the
large flux limit. These are the defining properties for the

FIG. 10. Upper graph: Probabilities of finding one atom, or two
consecutive ones, in the excited state. The flux is given byN520
and the thermal occupation number isnb50.15. The curves show
no evidence for the resonant behavior of revivals. Lower graph:
Presence of revival resonances in equilibrium after averaging the
photon distribution overu. The same parameters as in the upper
graph are used but the variance inu is now given bysu

2510.

FIG. 11. Phase diagram in theu-su plane. The solid lines indi-
cate where new minima in the effective potential emerge. In the
lower left corner there is only one minimum atn50, this is the
thermal phase. Outside that region there is always a minimum for
nonzeron, implying that the cavity acts as a maser. To the right of
the solid line starting atu.4.6, and for not too largesu , there are
two or more minima and thus the correlation length grows expo-
nentially with the flux. For increasingsu minima disappear across
the dashed lines, starting with those at smalln. The dotted lines
show where the two lowest minima are equally deep.
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different phases in Sec. V. The parameter that controls finite-
flux effects is the ratio between the period of oscillations in
the potential and the size of the discrete steps inx. If
q5sin2~uAx! varies slowly overDx51/N, the continuum
limit is usually a good approximation, while it can be very
poor in the opposite case. In the discrete case there exist, for
certain values ofu, states that cannot be pumped above a
certain occupation number sinceqn50 for that level. This
effect is not seen in the continuum approximation. These
states are called trapping states@51# and we discuss them and
their consequences in this section.

The continuum approximation starts breaking down for
small photon numbers whenu*2pAN, and is completely
inappropriate when the discreteness is manifest for all pho-
ton numbers lower thanN, i.e., foru*2pN. In that case our
analysis in Sec. V breaks down and the system may occa-
sionally, for certain values ofu, return to a noncritical phase.

A. Trapping states

The equilibrium distribution in Eq.~2.23! has peculiar
properties wheneverqm50 for some value ofm, in particular
whennb is small, and dramatically so whennb50. This phe-
nomenon occurs whenu5kpAN/m and is called a trapping
state. When it happens, we havepn50 for all n>m ~for
nb50!. The physics behind this can be found in Eq.~2.12!,
whereM ~2! determines the pumping of the cavity by the
atoms. Ifqm50 the cavity cannot be pumped abovem pho-
tons by emission from the passing atoms. For any nonzero
value ofnb there is still a possibility for thermal fluctuation
abovem photons andpnÞ0 even forn>m. The effect of
trapping is lost in the continuum limit where the potential is
approximated by Eq.~4.35!. Some experimental conse-
quences of trapping states were studied for very low tem-
perature in @52# and it was stated that in the range
nb50.121.0 no experimentally measurable effects were
present. We, however, show below that there are clear sig-
nals of trapping states in the correlation length even for
nb51.0.

B. Thermal cavity revivals

Due to the trapping states, the cavity may revert to a
statistical state, resembling the thermal state atu50, even if
u.0. By thermal revival we mean that the state of the cavity
returns to theu50 thermal state for other values ofu. Even if
the equilibrium state for nonzerou can resemble a thermal
state, it does not at all mean that the dynamics at that value
of u is similar to what it is atu50, since the deviations from
equilibrium can have completely different properties. A
straightforward measure of the deviation from theu50 state
is the distance in theL2 norm,

dL2~u!5S (
n50

`

@pn~0!2pn~u!#2D 1/2. ~7.1!

In Fig. 12 we exhibitdL2(u) for N510 and several values of
nb .

For small values ofnb we find cavity revivals at all mul-
tiples of A10p, which can be explained by the fact that
sin(uAn/N) vanishes forn51 andN510 at those points, i.e.,

the cavity is in a trapping state. That implies thatpn vanishes
for n>1 ~for nb50! and thus there are no photons in the
cavity. For larger values ofnb the trapping is less efficient
and the thermal revivals go away.

Going to much larger values ofu we can start to look for
periodicities in the fluctuations indL2(u). In Fig. 13 ~upper
graph! we present the spectrum of periods occurring in
dL2(u) over the range 0,u,1024.

Standard revivals should occur with a periodicity ofDu
52pA^n&, which is typically between 15 and 20, but there
are hardly any peaks at these values. On the other hand, for
periodicities corresponding to trapping states, i.e.,Du
5pA10/n, there are very clear peaks, even thoughnb51.0,
which is a relatively large value.

In order to see whether trapping states influence the cor-
relation length we present in Fig. 13 a similar spectral de-
composition ofj~u! ~lower graph! and we find the same
peaks. A more direct way of seeing the effect of trapping

FIG. 12. Distance between the initial probability distribution
pn~0! andpn~u! measured bydL2(u) in Eq. ~7.1!.

FIG. 13. Amplitudes of Fourier modes ofdL2(u) ~upper graph!
andj~u! ~lower graph! as functions of periods usingN510,nb51.0
and scanning 0,u,1024. There are pronounced peaks at the values
of trapping states:Du5pAN/n.
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states is to study the correlation length for smallnb . In Fig.
14 we see some very pronounced peaks for smallnb which
rapidly go away whennb increases. They are located atu
5pkAN/n for every integerk and n. The effect is most
dramatic whenk is small. In Fig. 14 there are conspicuous
peaks atu5pA103$1/),1/&,1,2/),2/&%, agreeing well
with the formula for trapping states. Notice how sensitive the
correlation length is to the temperature whennb is small
@52#.

VIII. CONCLUSIONS

We have thoroughly discussed various aspects of long-
time correlations in the micromaser. It is truly remarkable
that this simple dynamical system can show such a rich
structure of different phases. The two basic parameters in the
theory are the time the atom spends in the cavity,t, and the
ratioN5R/g between the rate at which atoms arrive and the
decay constant of the cavity. The natural observables are
related to the statistics of the outgoing atom beam, the aver-
age excitation being the simplest one. We propose to use the
long-time correlation length as a second observable describ-
ing different aspects of the photon statistics in the cavity.
The phase structure we have investigated is defined in the
limit of large flux, and can be summarized as follows.

(1) Thermal phase, 0&u,1. The mean number of pho-
tons ^n& is low ~finite in the limit N→`!, and so is the
variancesn and the correlation lengthj.

(2) Transition to maser phase,u.1. The maser is start-
ing to get pumped up andj, ^n&, andsn grow like AN.

(3) Maser phase, 1,u,u1.4.603. The maser is
pumped up to^n&;N, but fluctuations remain smaller,
sn;AN, whereasj is finite.

(4) First critical phase,u1,u,u2.7.790. The correla-
tion length increases exponentially withN, but nothing par-
ticular happens witĥn& andsn at u1.

(5) Second maser transition,u.6.6. As the correlation
length reaches its maximum,^n& makes a discontinuous
jump to a higher value, though in both phases it is of the
order ofN. The fluctuations grow likeN at this critical point.

At higher values ofu there are more maser transitions in
^n&, accompanied by critical growth ofsn , each time the
photon distribution has two competing maxima. The correla-

tion length remains exponentially large as a function ofN, as
long as there are several maxima, though the exponential
factor depends on the details of the photon distribution.

No quantum interference effects have been important in
our analysis and the statistical aspects are purely classical.
The reason is that we only study one atomic observable, the
excitation level, which can take the values61. Making an
analogy with a spin system, we can say that we only measure
the spin along one direction. It would be very interesting to
measure noncommuting variables, i.e., the spin in different
directions or linear superpositions of an excited and decayed
atom, and see how the phase transitions can be described in
terms of such observables@43,45#. Most effective descrip-
tions of phase transitions in quantum field theory rely on
classical concepts, such as the free energy and the expecta-
tion value of some field, and do not describe coherent ef-
fects. Since linear superpositions of excited and decayed at-
oms can be injected into the cavity, it therefore seems to be
possible to study coherent phenomena in phase transitions
both theoretically and experimentally, using the micromaser.
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APPENDIX A: JAYNES-CUMMINGS MODEL
WITH DAMPING

In most experimental situations the time the atom spends
in the cavity is small compared to the average time between
the atoms and the decay time of the cavity. Then it is a good
approximation to neglect the damping term when calculating
the transition probabilities from the cavity-atom interaction.
In order to establish the range of validity of the approxima-
tion we shall now study the full interaction governed by the
JC Hamiltonian in Eq.~2.1! and the damping in Eq.~2.14!.
The density matrix for the cavity and one atom can be writ-
ten as

r5r0^ 11rz^ sz1r1
^ s21r2

^ s1 , ~A1!

wherer65rx6 iry and s65(sx6 isy)/2. We want to re-
strict the cavity part of the density matrix to be diagonal, at
least ther0 part, which is the only part of importance for the
following atoms, provided that the first one is left unob-
served~see discussion in Sec. II B!. Introducing the notation

rn
05^nur0un&,

rn
z5^nurzun&,

rn
65^nur1un21&2^n21ur2un&, ~A2!

FIG. 14. Correlation lengths for different values ofnb . The high
peaks occur for trapping states and go away asnb increases.
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the equations of motion can be written as

drn
0

dt
5
ig

2
~Anrn

62An11rn11
6 !2g(

m
Lnm
C rm

0 ,

drn
z

dt
52

ig

2
~Anrn

61An11rn11
6 !2g(

m
Lnm
C rm

z ,

drn
6

dt
5 i2gAn~rn

02rn21
0 2rn

z2rn21
z !2g(

m
Lnm

6 rm
6 ,

~A3!

where

Lnm
C 5@~nb11!n1nb~n11!#dn,m2~nb11!~n11!dn,m21

2nbndn,m11 ,

Lmn
6 5@nb~2n11!2 1

2 #dn,m2~nb11!An~n11!dn,m21

2nbAn~n21!dn,m11 ~A4!

It is thus consistent to study the particular form of the cavity
density matrix, which has only one nonzero diagonal or sub-
diagonal for each component, even when damping is in-
cluded. Our strategy shall be to calculate the first-order cor-
rection in g in the interaction picture, using the JC
Hamiltonian as the free part. The JC part of Eq.~A3! can be
drastically simplified using the variables

rn
s5r0

n1r0
n212rz

n1rz
n21,

rn
a5r0

n2r0
n212rz

n2rz
n21. ~A5!

The equations of motion then take the form

drn
s

dt
52

g

2 (
m

@~Lnm
C 1Ln21,m21

C !rm
s

1~Lnm
C 2Ln21,m21

C !rm
a #,

dra
n

dt
52igAnrn

62
g

2 (
m

@~Lnm
C 2Ln21,m21

C !rm
s

1~Lnm
C 1Ln21,m21

C !rm
a #,

drn
6

dt
52igAnrn

a2g(
m

Lnm
6 rm

6 . ~A6!

The initial conditionsr n
s(0)5pn21, r n

a(0)52pn21, and
r n

6~0!50 are obtained from

Tr@r~0!un&^nu ^ 1#52r0
n~0!5pn ,

Tr@r~0!un&^nu ^
1
2 ~12sz!#5r0

n~0!2rz
n~0!50,

Tr@r~0!un&^nu ^ sx#5Tr@r~0!un&^nu ^ sy#50. ~A7!

In the limit g→0 it is easy to solve Eq.~A6! and we get back
the standard solution of the JC equations, which is

rs
n~ t !5pn21 ,

ra
n~ t !52pn21cos~2gtAn!,

r6
n ~ t !52 ipn21sin~2gtAn!. ~A8!

Equation ~A6! is a matrix equation of the form
ṙ5(C02gC1)r. WhenC0 andC1 commute the solution can
be written asr(t)5exp(2gC1t)exp(C0t)r~0!, which is the
expression used in Eq.~2.19!. In our caseC0 andC1 do not
commute and we have to solve the equations perturbatively
in g. Let us write the solution asr(t)5exp(C0t)r1(t) since
exp(C0t) can be calculated explicitly. The equation forr1(t)
becomes

dr1
dt

52ge2C0tC1e
C0tr1~ t !, ~A9!

which to lowest order ing can be integrated as

r1~t!52gE
0

t

dt e2C0tC1e
C0tr~0!1r~0!. ~A10!

The explicit expression for exp(C0t) is

eC0t5dnmS 1 0 0

0 cos~2gtAn! i sin~2gtAn!

0 i sin~2gtAn! cos~2gtAn!
D , ~A11!

and therefore exp~2C0t!C1exp(C0t) is a bounded function
of t. The elements ofC1 are given by various combinations
of L nm

C andL nm
6 in Eq. ~A4! and they grow at most linearly

with the photon number. Thus the integrand of Eq.~A10! is
of the order of^n& up to annb-dependent factor. We con-
clude that the damping is negligible as long asgt^n&!1,
unlessnb is very large. When the cavity is in a maser phase,
^n& is of the same order of magnitude asN5R/g, so the
condition becomestR!1.

APPENDIX B: SUM RULE
FOR THE CORRELATION LENGTHS

In this appendix we derive the sum rule quoted in Eq.
~3.14! and use the notation of Sec. IV C.

ForAK50 the determinant detLK becomesB0B1•••BK as
may be easily derived by row manipulation. SinceAK only
occurs linearly in the determinant it must obey the recursion
relation detLK5B0•••BK1AKdetLK21. Repeated applica-
tion of this relation leads to the expression

detLK5 (
k50

K11

B0•••Bk21Ak•••AK . ~B1!

This is valid for arbitrary values ofB0 andAK . Notice that
here we defineB0•••Bk2151 for k50 and similarly
Ak•••AK51 for k5K11.
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In the actual case we haveB05AK50, so that the deter-
minant vanishes. The characteristic polynomial consequently
takes the form

det~LK2l!5~2l!~l12l!•••~lK2l!

52D1l1D2l
21O~l3!, ~B2!

where the last expression is valid forg→0. The coefficients
are

D15l1•••lK , ~B3!

and

D25D1(
k51

K
1

lk
. ~B4!

To calculateD1 we note that it is the sum of theK sub-
determinants along the diagonal. The subdeterminant ob-
tained by removing thekth row and column takes the form

UA01B0 2B1

A

2Ak22 Ak211Bk21 0

0 Ak111Bk11 2Bk12

A

2AK21 AK1BK

U , ~B5!

which decomposes into the product of two smaller determi-
nants which may be calculated using Eq.~B1!. Using
B05AK50 we get

D15 (
k50

K

A0•••Ak21Bk11•••BK . ~B6!

Repeating this procedure forD2, which is a sum of all pos-
sible diagonal subdeterminants with two rows and columns
removed (0<k, l<K), we find

D25 (
k50

K21

(
l5k11

K

(
m5k11

l

A0•••Ak21Bk11•••

3Bm21Am•••Al21Bl11•••BK . ~B7!

Finally, making use of Eq.~4.13! we find

D15
B1•••BK

p0
0 (

k50

K

pk
0, ~B8!

and

D25
B1•••BK

p0
0 (

k50

K21

(
l5k11

K

(
m5k11

l pk
0pl

0

Bmpm
0 . ~B9!

Introducing the cumulative probability

Pn
05 (

m50

n21

pm
0 , ~B10!

and interchanging the sums, we get the correlation sum rule

(
n51

K
1

ln
5 (

n51

K Pn
0~12Pn

0/PK11
0 !

Bnpn
0 . ~B11!

This sum rule is valid for finiteK but diverges forK→`,
because the equilibrium distributionp n

0 approaches a thermal
distribution for n@N. Hence the right-hand side diverges
logarithmically in that limit. The left-hand side also diverges
logarithmically with the truncation size because we have
l n
05n for the untruncated thermal distribution. We do not

know the thermal eigenvalues for the truncated case, but ex-
pect that they will be of the forml n

05n1O(n2/K) since
they should vanish forn50 and become progressively worse
asn approachesK. Such a correction leads to a finite cor-
rection to(n1/ln . In fact, evaluating the right-hand side of
Eq. ~B11!, we get for largeK

(
n51

K
1

ln
0 . (

n51

K
12@nb /~11nb!#

n

n
. (

n51

K
1

n
2 ln~11nb!.

~B12!

Subtracting the thermal case from Eq.~B11! we get in the
limit of K→`

(
n51

` S 1ln
2

1

ln
0D 5 (

n51

` S Pn
0~12Pn

0!

Bnpn
0 2

12@nb /~11nb!#
n

n D .
~B13!

Here we have extended the summation to infinity under the
assumption that for largen we haveln.l n

0. The left-hand
side can be approximated byj21 in regions where the lead-
ing correlation length is much greater than the others. A
comparison of the exact eigenvalue and the sum-rule predic-
tion is made in Fig. 4.

APPENDIX C: DAMPING MATRIX

In this appendix we find an integral representation for the
matrix elements of (x1LC)

21, whereLC is given by Eq.
~2.18!. Let
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vn5 (
m50

`

@xdnm1~LC!nm#wm , ~C1!

and introduce generating functionalsv(z) andw(z) for com-
plex z defined by

v~z!5 (
n50

`

znvn , w~z!5 (
n50

`

znwn . ~C2!

By making use of

v~z!5 (
n,m50

`

~x1LC!nmz
nwm , ~C3!

one can derive a first-order differential equation forw(z),

@x1nb~12z!#w~z!1@11nb~12z!#~z21!
dw~z!

dz
5v~z!,

~C4!

which can be solved with the initial conditionv~1!51, i.e.,
w(1)51/x. If we consider the monomialv(z)5vmz

m and
the correspondingw(z)5wm(z), we find that

wm~z!5E
0

1

dt~12t !x21 $z@12t~11nb!#1t~11nb!%
m

@11nbt~12z!#m11 .

~C5!

Therefore (x1Lc) nm
21 is given by the coefficient ofzn in the

series expansion ofwm(z). In particular, we obtain fornb50
the result

~x1LC!nm
215Smn D G~x1n!G~m2n11!

G~x1m11!
, ~C6!

wherem>n. We then find that

P0~1,1 !5 (
n50

`

cos2~gtAn11! (
m5n

`
m!

n!

NG~N1n!

G~N1m11!

3cos2~gtAm11!pm
0 , ~C7!

wherepm
0 is the equilibrium distribution given by Eq.~2.23!,

and wherex5N5R/g. Equation~C7! can also be derived
from the known solution of the master equation in Eq.~2.14!
for nb50 @46#. For smallnb and/or largex, Eq. ~C5! can be
used to a find a series expansion innb .
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