6 research outputs found

    Strombolian eruptions and dynamics of magma degassing at Yasur Volcano (Vanuatu)

    Get PDF
    Open vent basaltic volcanoes account for a substantial portion of the global atmospheric outgassing flux, largely through passive degassing and mild explosive activity. We present volcanic gas flux and composition data from Yasur Volcano, Vanuatu collected in July 2018. The average volcanic plume chemistry is characterised by a mean molar CO2/SO2 ratio of 2.14, H2O/SO2 of 148 and SO2/HCl of 1.02. The measured mean SO2 flux in the period of 6th to 9th July is 4.9 kg s−1. Therefore, the mean fluxes of the other species are 7.5 kg∙s−1 CO2, 208 kg∙s−1 H2O and 4.8 kg∙s−1 HCl. The degassing regime at Yasur volcano ranges from ‘passive’ to ‘active’ styles, with the latter including Strombolian activity and spattering. Gases emitted during active degassing are enriched in SO2 over HCl and CO2 over SO2 relative to passive degassing, with CO2/SO2 ratios of 2.85 ± 0.17, SO2/HCl of 1.6 ± 0.22, and H2O/SO2 of 315 ± 78.8. Gases emitted during passive degassing have CO2/SO2 ratios of 1.96 ± 0.12, SO2/HCl of 0.50 ± 0.07 and H2O/SO2 of 174 ± 43.5. We use a model of volatile degassing derived from melt inclusion studies (Metrich et al., 2011), combined with our observations of chemical variations in the outgassing bubbles to propose a mechanism for magma degassing in the conduit at Yasur. We envisage a shallow conduit filled with crystal-rich magma, forming a viscous and mobile plug that develops an effective yield strength from the surface to a depth of at least 2000 m, in which bubbles are trapped, grow, ascend towards the surface and burst in a typical Strombolian eruption. Deeper bubbles released during active degassing are enriched in CO2 and SO2 compared to bubbles released during ‘passive degassing’, which are sourced from close to the surface, and are, consequently, HCl-rich

    A rapidly convecting lava lake at Masaya Volcano, Nicaragua

    Get PDF
    Lava lakes provide a rare opportunity to study conduit flow processes through direct observation of the exposed magma surface. The recent lava lake activity at Masaya volcano (Nicaragua), which commenced in 2015, displayed several unusual phenomena. We report on the dynamics of this rapidly convecting lake, which, to the best of our knowledge manifested the highest lava flow velocities ever reported for a lava lake: 13.7–16.4 m s−1, in addition to unusual fluid dynamic behavior involving alteration in surface flow direction. We studied this system with multiparametric and high time resolution remote sensing measurements, performed during June 2017, including ultraviolet camera observations of SO2 emission rates, near infrared thermal camera measurements and video analyses of the lake surface. Median SO2 emission rates of 3.1 (±0.8) and 3.7 (±0.9) kg s−1 were found, which are lower than previously published estimates, and could represent challenging remote sensing conditions or a waning in lava lake activity. Video analyses enabled characterization of frequent bursts of approximately hemispherical spherical-cap bubbles on the surface with diameters ranging 0.6–8.5 m (median of 2.6 m), and calculation of individual bubble masses, which contribute to active bubble bursting values estimated at 1.9 to 3.9 kg s−1. We show that only a small fraction, 7–17%, of total emission volumes are contributed by these bubbles, based on estimated emission rates of 22.5 and 26.9 kg s−1. Furthermore, periodicity analysis reveals regular 200–300 s oscillations in SO2 emissions. These are not shared by any of our other datasets and particularly during the contemporaenously acquried thermal data, hence, we tentatively assign an atmospheric causal generation mechanism, driven by atmospheric transport and turbulence phenomena, such as eddying. Overall, we highlight the uniquely high velocity and fluid dynamic behavior of Masaya lava lake

    Gas Emissions From the Western Aleutians Volcanic Arc

    No full text
    The Aleutian Arc is remote and highly active volcanically. Its 4,000 km extent from mainland Alaska to Russia’s Kamchatka peninsula hosts over 140 volcanic centers of which about 50 have erupted in historic times. We present data of volcanic gas samples and gas emission measurements obtained during an expedition to the western-most segment of the arc in September 2015 in order to extend the sparse knowledge on volatile emissions from this remote but volcanically active region. Some of the volcanoes investigated here have not been sampled for gases before this writing. Our data show that all volcanoes host high-temperature magmatic-hydrothermal systems and have gas discharges typical of volcanoes in oceanic arcs. Based on helium isotopes, the western Aleutian Arc segment has minimal volatile contributions from the overriding crust. Volcanic CO2 fluxes from this arc segment are small, compared to the emissions from volcanoes on the Alaska Peninsula and mainland Alaska. The comparatively low CO2 emissions may be related to the lower sediment flux delivered to the trench in this part of the arc

    Tracking carbon from subduction to outgassing along the Aleutian-Alaska Volcanic Arc

    No full text
    Subduction transports volatiles between Earth’s mantle, crust, and atmosphere, ultimately creating a habitable Earth. We use isotopes to track carbon from subduction to outgassing along the Aleutian-Alaska Arc. We find substantial along-strike variations in the isotopic composition of volcanic gases, explained by different recycling efficiencies of subducting carbon to the atmosphere via arc volcanism and modulated by subduction character. Fast and cool subduction facilitates recycling of ~43 to 61% sediment-derived organic carbon to the atmosphere through degassing of central Aleutian volcanoes, while slow and warm subduction favors forearc sediment removal, leading to recycling of ~6 to 9% altered oceanic crust carbon to the atmosphere through degassing of western Aleutian volcanoes. These results indicate that less carbon is returned to the deep mantle than previously thought and that subducting organic carbon is not a reliable atmospheric carbon sink over subduction time scales
    corecore