98 research outputs found

    Adaptation to extreme environments: Macromolecular dynamics in complex systems

    Get PDF
    What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring Fextremophiles_. Extremophiles and their macromolecules had to develop molecular mechanisms of adaptation to extreme physico–chemical conditions. Using neutron spectroscopy, we have demonstrated that molecular dynamics represents one of these molecular mechanisms of adaptation. To which extent do hyper-saline conditions and extreme temperatures influence molecular dynamics? First, molecular dynamics were analysed for halophilic malate dehydrogenase from Haloarcula marismortui (Hm MalDH) under different molar solvent salt concentration conditions influencing its stability. Secondly, mean macromolecular motions were measured in-vivo in psychrophile (Aquaspirillum arcticum), mesophile (Escherichia coli and Proteus mirabilis), thermophile (Thermus thermophilus), and hyperthermophile (Aquifex pyrofilus) bacteria. The mean constant force of Hm MalDH increases progessively with increasing stability. The results show that the molecular adaptation of Hm MalDH to hyper-saline conditions is achieved through an increasing resilience of its structure dominated by enthalpic mechanisms. The study of bacteria has provided tools to quantify the macromolecular adaptation to extreme temperatures in the naturally crowded environment of the cell. The macromolecular resilience of bacteria increases with adaptation to high temperatures

    From powder to solution: hydration dependence of human hemoglobin dynamics correlated to body temperature

    Get PDF
    A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. In order to focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data revealed that amino acid side-chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function

    Establishment of novel long-term cultures from EpCAM positive and negative circulating tumour cells from patients with metastatic gastroesophageal cancer

    Get PDF
    Circulating tumour cell (CTC) enumeration and profiling has been established as a valuable clinical tool in many solid malignancies. A key challenge in CTC research is the limited number of cells available for study. Ex vivo CTC culture permits expansion of these rare cell populations for detailed characterisation, functional assays including drug sensitivity testing, and investigation of the pathobiology of metastases. We report for the first time the establishment and characterisation of two continuous CTC lines from patients with gastroesophageal cancer. The two cell lines (designated UWG01CTC and UWG02CTC) demonstrated rapid tumorigenic growth in immunodeficient mice and exhibit distinct genotypic and phenotypic profiles which are consistent with the tumours of origin. UWG02CTC exhibits an EpCAM+, cytokeratin+, CD44+ phenotype, while UWG01CTC, which was derived from a patient with metastatic neuroendocrine cancer, displays an EpCAM−, weak cytokeratin phenotype, with strong expression of neuroendocrine markers. Further, the two cell lines show distinct differences in drug and radiation sensitivity which match differential cancer-associated gene expression pathways. This is strong evidence implicating EpCAM negative CTCs in metastasis. These novel, well characterised, long-term CTC cell lines from gastroesophageal cancer will facilitate ongoing research into metastasis and the discovery of therapeutic targets

    Differences in lateral gene transfer in hypersaline versus thermal environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles.</p> <p>Results</p> <p>We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles.</p> <p>Conclusions</p> <p>Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.</p

    Structure and Dynamics of Biological Systems: Integration of Neutron Scattering with Computer Simulation

    Full text link
    The combination of molecular dynamics simulation and neutron scattering techniques has emerged as a highly synergistic approach to elucidate the atomistic details of the structure, dynamics and functions of biological systems. Simulation models can be tested by calculating neutron scattering structure factors and comparing the results directly with experiments. If the scattering profiles agree the simulations can be used to provide a detailed decomposition and interpretation of the experiments, and if not, the models can be rationally adjusted. Comparison with neutron experiment can be made at the level of the scattering functions or, less directly, of structural and dynamical quantities derived from them. Here, we examine the combination of simulation and experiment in the interpretation of SANS and inelastic scattering experiments on the structure and dynamics of proteins and other biopolymers

    Adaptation to high temperatures through macromolecular dynamics by neutron scattering

    Get PDF
    Work on the relationship between hyperthermophile protein dynamics, stability and activity is reviewed. Neutron spectroscopy has been applied to measure and compare the macromolecular dynamics of various hyperthermophilic and mesophilic proteins, under different conditions. First, molecular dynamics have been analyzed for the hyperthermophile malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, the lactate dehydrogenase from Oryctolagus cunniculus (rabbit) muscle. The neutron scattering approach has provided independent measurements of the global flexibility and structural resilience of each protein, and it has been demonstrated that macromolecular dynamics represents one of the molecular mechanisms of thermoadaptation. The resilience was found to be higher for the hyperthermophilic protein, thus ensuring similar flexibilities in both enzymes at their optimal activity temperature. Second, the neutron method has been developed to quantify the average macromolecular flexibility and resilience within the natural crowded environment of the cell, and mean macromolecular motions have been measured in vivo in psychrophile, mesophile, thermophile and hyperthermophile bacteria. The macromolecular resilience in bacteria was found to increase with adaptation to high temperatures, whereas flexibility was maintained within narrow limits, independent of physiological temperature for all cells in their active state. Third, macromolecular motions have been measured in free and immobilized dihydrofolate reductase from Escherichia coli. The immobilized mesophilic enzyme has increased stability and decreased activity, so that its properties are changed to resemble those of a thermophilic enzyme. Quasi-elastic neutron scattering measurements have also been performed to probe the protein motions. Compared to the free enzyme, the average height of the activation free energy barrier to local motions was found to be increased by 0.54 kcal.mol-1 in the immobilized dihydrofolate reductase, a value that is of the same order as expected from the theoretical rate equation

    In vivo measurement of internal and global macromolecular motions in E. coli

    Get PDF
    We present direct quasielastic neutron scattering measurements, in vivo, of macromolecular dynamics in E. coli. The experiments were performed on a wide range of time-scales, to cover the large panel of internal and self-diffusion motions. Three major internal processes were extracted at physiological temperature: a fast picosecond (ps) process that corresponded to restricted jump diffusion motions, and two slower processes that resulted from reorientational motions occurring in about 40 ps and 90 ps, respectively. The analysis of the fast process revealed that the cellular environment leads to an appreciable increase in internal molecular flexibility and diffusive motion rates compared to those evaluated in fully hydrated powders. The result showed that the amount of cell water plays a decisive role in internal molecular dynamics. Macromolecular interactions and confinement, however, attenuate slightly the lubricating effect of water, as revealed by the decrease of the in vivo parameters compared to those measured in solution. The study demonstrated that standard sample preparations do not mimic accurately the physiological environment, and suggested that intracellular complexity participates in functional dynamics necessary to biological activity. Furthermore, the method allowed the extraction of the self-diffusion of E. coli macromolecules, which presented similar parameters as those extracted for hemoglobin in red blood cells

    Solvent isotope effect on macromolecular dynamics in E. coli

    Get PDF
    Elastic incoherent neutron scattering was used to explore solvent isotope effects on average macromolecular dynamics in vivo. Measurements were performed on living E. coli bacteria containing H2O and D2O, respectively, close to physiological conditions of temperature. Global macromolecular flexibility, expressed as mean square fluctuation (MSF) values, and structural resilience in a free energy potential, expressed as a mean effective force constant, hk0i, were extracted in the two solvent conditions. They referred to the average contribution of all macromolecules inside the cell, mostly dominated by the internal motions of the protein fraction. Flexibility and resilience were both found to be smaller in D2O than in H2O. A difference was expected because the driving forces behind macromolecular stabilization and dynamics are different in H2O and D2O. In D2O, the hydrophobic effect is known to be stronger than in H2O: it favours the burial of non-polar surfaces as well as their van der Waals’ packing in the macromolecule cores. This may lead to the observed smaller MSF values. In contrast, in H2O, macromolecules would present more water-exposed surfaces, which would give rise to larger MSF values, in particular at the macromolecular surface. The smaller value suggested a larger entropy content in the D2O case due to increased sampling of macromolecular conformational substates

    Phys. Chem. Chem. Phys.

    No full text
    corecore