11 research outputs found

    Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo

    Get PDF
    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p < 0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p < 0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori

    Functional and molecular surveillance of Helicobacter pylori antibiotic resistance in Kuala Lumpur.

    No full text
    BACKGROUND: Helicobacter pylori is the etiological agent for diseases ranging from chronic gastritis and peptic ulcer disease to gastric adenocarcinoma and primary gastric B-cell lymphoma. Emergence of resistance to antibiotics possesses a challenge to the effort to eradicate H. pylori using conventional antibiotic-based therapies. The molecular mechanisms that contribute to the resistance of these strains have yet to be identified and are important for understanding the evolutional pattern and selective pressure imposed by the environment. METHODS AND FINDINGS: H. pylori was isolated from 102 patients diagnosed with gastrointestinal diseases, who underwent endoscopy at University Malaya Medical Centre (UMMC). The isolates were tested for their susceptibility on eleven antibiotics using Etest. Based on susceptibility test, 32.3% of the isolates were found to have primary metronidazole resistance; followed by clarithromycin (6.8%) and fluoroquinolones (6.8%). To further investigate the resistant strains, mutational patterns of gene rdxA, frxA, gyrA, gyrB, and 23S rRNA were studied. Consistent with the previous reports, metronidazole resistance was prevalent in the local population. However, clarithromycin, fluoroquinolone and multi-drug resistance were shown to be emerging. Molecular patterns correlated well with phenotypic data. Interestingly, multi-drug resistant (MDR) strains were found to be associated with higher minimum inhibitory concentration (MIC) than their single-drug resistant (SDR) counterparts. Most importantly, clarithromycin-resistant strains were suggested to have a higher incidence for developing multi-drug resistance. CONCLUSION: Data from this study highlighted the urgency to monitor closely the prevalence of antibiotic resistance in the Malaysian population; especially that of clarithromycin and multi-drug resistance. Further study is needed to understand the molecular association between clarithromycin resistance and multi-drug resistance in H. pylori. The report serves a reminder that a strict antibiotic usage policy is needed in Malaysia and other developing countries (especially those where H. pylori prevalence remained high)

    Polymorphisms in the host CYP2C19 gene and antibiotic-resistance attributes of Helicobacter pylori isolates influence the outcome of triple therapy

    No full text
    Objectives: Eradication of Helicobacter pylori is influenced by susceptibility to antimicrobial agents, elevated bacterial load and degree of acid inhibition, which can be affected by genotypes of drug-metabolizing enzymes [cytochrome P450 (CYP) 2C19 polymorphism]. Theoretically, the choice and dose of proton pump inhibitor may also influence the suppression of H. pylori infection. The CYP2C19 genotype has recently been found to have an impact on peptic ulcer healing, H. pylori eradication and therapeutic efficacy of proton pump inhibitors. Methods: Here, we investigated the impact of the CYP2C19 genotype polymorphism and the success of triple therapy (fluoroquinolones/metronidazole/clarithromycin) on antibiotic-resistant strains in eradicating H. pylori in human subjects with non-ulcer dyspepsia (NUD), in human subjects with peptic ulcer disease (PUD) and in asymptomatic human subjects (positive and negative for H. pylori infection). Results: Based on the CYP2C19 genotypes, determined by Droplet Digital PCR (ddPCR) analysis, we found 11.2%, 62.5% and 26.3% corresponding to rapid metabolizers, intermediate metabolizers and poor metabolizers, respectively. However, we did not find any significant effect for homozygous ABCB1 or CYP2C19*2 and CYP2C19*3 alleles. We detected several participants heterozygous for both ABCB1 and CYP2C19*2, CYP2C19*3 and CYP2C19*17 loci. The participants heterozygous for both ABCB1 and CYP2C19*2 and *3 loci should be defined as intermediate and poor metabolizers according to the haplotype analysis in the NUD, PUD and asymptomatic subjects. Conclusions: Consequently, fluoroquinolones/metronidazole/clarithromycin-based triple therapies can be used to eradicate H. pylori infection, if one does not know the CYP2C19 genotype of the patient

    MIC of metronidazole and <i>rdxA</i> and <i>frxA</i> mutations.

    No full text
    <p>Note: MDR (Multi-drug resistant), PTC (Premature termination codon).</p><p>N*: no specific variation,</p><p>ins: amino acid insertion, del: amino acid deletion.</p

    Comparison of average minimum inhibitory concentration (MIC) between single-drug resistant (SDR) and MDR strains.

    No full text
    <p>Two-tailed Student's <i>t</i>-test <i>P</i>-value < 0.05 was considered significant and <0.001 was highly significant.</p><p>Note: MDR (Multi-drug resistance), SDR (Single-drug resistance).</p><p>Ave MIC (Average MIC).</p

    Molecular and proteomic analysis of levofloxacin and metronidazole resistant Helicobacter pylori

    Get PDF
    Antibiotic resistance in bacteria incur fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm formating ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography / mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrates the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in approximately 10% of metronidazole resistant strains
    corecore