41 research outputs found
Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data.
In order to contribute to the debate about southern glacial refugia used by temperate species and more northern refugia used by boreal or cold-temperate species, we examined the phylogeography of a widespread snake species (Vipera berus) inhabiting Europe up to the Arctic Circle. The analysis of the mitochondrial DNA (mtDNA) sequence variation in 1043 bp of the cytochrome b gene and in 918 bp of the noncoding control region was performed with phylogenetic approaches. Our results suggest that both the duplicated control region and cytochrome b evolve at a similar rate in this species. Phylogenetic analysis showed that V. berus is divided into three major mitochondrial lineages, probably resulting from an Italian, a Balkan and a Northern (from France to Russia) refugial area in Eastern Europe, near the Carpathian Mountains. In addition, the Northern clade presents an important substructure, suggesting two sequential colonization events in Europe. First, the continent was colonized from the three main refugial areas mentioned above during the Lower-Mid Pleistocene. Second, recolonization of most of Europe most likely originated from several refugia located outside of the Mediterranean peninsulas (Carpathian region, east of the Carpathians, France and possibly Hungary) during the Mid-Late Pleistocene, while populations within the Italian and Balkan Peninsulas fluctuated only slightly in distribution range, with larger lowland populations during glacial times and with refugial mountain populations during interglacials, as in the present time. The phylogeographical structure revealed in our study suggests complex recolonization dynamics of the European continent by V. berus, characterized by latitudinal as well as altitudinal range shifts, driven by both climatic changes and competition with related species
Characterization of microsatellite markers in the squid, Loligo bleekeri (Cephalopoda: Loliginidae)
Loligo bleekeri has a long spawning season and the size of mature males changes during the season: dimorphic (large/small) early in the spawning season and monomorphic (small) later in the spawning season. To understand how copulatory behaviours relate to the dimorphism, we developed five polymorphic microsatellite loci in L. bleekeri. The level of polymorphism ranged from 10 to 22 alleles with expected heterozygosities ranging from 0.79 to 0.93, suggesting that the novel polymorphic loci should be useful for parentage analysis of L. bleekeri
Population size and genetic diversity in sand lizards (Lacerta agilis) and adders (Vipera berus)
Because low genetic diversity may threaten the viability of isolated populations, conservation biologists have devoted much effort to quantify genetic variation. Two techniques routinely used involve levels of mini- and microsatellite polymorphism, with the assumption that levels of variation at these parts of the genome will be reflected in levels of variation at other loci. Our data challenge this assumption. We studied six populations of sand lizards (Lacerta agilis) and five populations of adders (Vipera berus), differing considerably in size and degree of isolation. They, therefore, offer an opportunity to examine how population parameters affect genetic variation at different parts of the genome. Relative population size (based on degree of isolation and number of animals) was not correlated with either minisatellite variability or microsatellite heterozygosity. However, our measures of genetic diversity at the Mhc class I loci of both sand lizards and adders revealed a significant correlation between relative population size and Mhc polymorphism: non-isolated/larger populations exhibited higher genetic diversity than did isolated/small populations. Consequently, only the Mhc-based estimates of genetic diversity yielded results in agreement with population genetic theory. (C) 2000 Elsevier Science Ltd. All rights reserved
Genetic exchange and the origin of adaptations: prokaryotes to primates
Data supporting the occurrence of adaptive trait transfer (i.e. the transfer of genes and thus the phenotype of an adaptive trait through viral recombination, lateral gene transfer or introgressive hybridization) are provided in this review. Specifically, we discuss examples of lateral gene transfer and introgressive hybridization that have resulted in the transfer or de novo origin of adaptations. The evolutionary clades in which this process has been identified include all types of organisms. However, we restrict our discussion to bacteria, fungi, plants and animals. Each of these examples reflects the same consequence, namely that the transfer of genetic material, through whatever mechanism, may result in adaptive evolution. In particular, each of the events discussed has been inferred to impact adaptations to novel environmental settings in the recipient lineage