91 research outputs found

    Analysis and test for space shuttle propellant dynamics: 1/60th scale model test results

    Get PDF
    During the abort sequence, the ET and orbiter separate under aerodynamic loading, with propellant remaining in the ET. The separation event included a seven second decelerating coast period during which the residual propellant accelerates relative to the ET/orbiter. At separation, ET clearance was primarily provided by aerodynamics acting on the ET to move it away. The motion of the propellant, primarily LOX, significantly influenced the resulting ET motion and could cause the ET to recontact the orbiter. A test program was conducted involving thirty-two drops with 1/60th scale models of the ET LOX tank. The objective was to acquire data on the nature of low g propellant reorientation, in the ET LOX tank, and to measure the forces exerted on the tank by the moving propellant

    Effect of Vibration on Retention Characteristics of Screen Acquisition Systems

    Get PDF
    An analytical and experimental investigation of the effect of vibration on the retention characteristics of screen acquisition systems was performed. The functioning of surface tension devices using fine-mesh screens requires that the pressure differential acting on the screen be less than its pressure retention capability. When exceeded, screen breakdown will occur and gas-free expulsion of propellant will no longer be possible. An analytical approach to predicting the effect of vibration was developed. This approach considers the transmission of the vibration to the screens of the device and the coupling of the liquid and the screen in establishing the screen response. A method of evaluating the transient response of the gas/liquid interface within the screen was also developed

    Analysis and test for space shuttle propellant dynamics

    Get PDF
    This report presents the results of a study to develop an analytical model capable of predicting the dynamic interaction forces on the Shuttle External Tank, due to large amplitude propellant slosh during RTLS separation. The report details low-g drop tower and KC-135 test programs that were conducted to investigate propellant reorientation during RTLS. In addition, the development of a nonlinear finite element slosh model (LAMPS2, two dimensional, and one LAMPS3, three dimensional) is presented. Correlation between the model and test data is presented as a verification of the modeling approach

    Analysis and test for space shuttle propellant dynamics (1/10th scale model test results). Volume 1: Technical discussion

    Get PDF
    Space shuttle propellant dynamics during ET/Orbiter separation in the RTLS (return to launch site) mission abort sequence were investigated in a test program conducted in the NASA KC-135 "Zero G" aircraft using a 1/10th-scale model of the ET LOX Tank. Low-g parabolas were flown from which thirty tests were selected for evaluation. Data on the nature of low-g propellant reorientation in the ET LOX tank, and measurements of the forces exerted on the tank by the moving propellent will provide a basis for correlation with an analytical model of the slosh phenomenon

    Low thrust chemical orbit to orbit propulsion system propellant management study

    Get PDF
    Low thrust chemical propulsion systems were sized for transfer of large space systems from LEO to GEO. The influence of propellant combination, tankage and insulation requirements, and propellant management techniques on the LTPS mass and volume were studied. Liquid oxygen combined with hydrogen, methane or kerosene were the propellant combinations. Thrust levels of 445, 2230, and 4450 N were combined with 1, 4 and 8 perigee burn strategies. This matrix of systems was evaluated using multilayer insulation and spray-on-foam insulation systems. Various combinations of toroidal, cylindrical with ellipsoidal domes, and ellipsoidal tank shapes were investigated. Results indicate that low thrust (445 N) and single perigee burn approaches are considerably less efficient than the higher thrust level and multiple burn strategies. A modified propellant settling approach minimized propellant residuals and decreased system complexity, in addition, the toroid/ellipsoidal tank combination was predicted to be shortest

    Behavior of fluids in a weightless environment

    Get PDF
    Fluid behavior in a low-g environment is controlled primarily by surface tension forces. Certain fluid and system characteristics determine the magnitude of these forces for both a free liquid surface and liquid in contact with a solid. These characteristics, including surface tension, wettability or contact angle, system geometry, and the relationships governing their interaction, are discussed. Various aspects of fluid behavior in a low-g environment are then presented. This includes the formation of static interface shapes, oscillation and rotation of drops, coalescence, the formation of foams, tendency for cavitation, and diffusion in liquids which were observed during the Skylab fluid mechanics science demonstrations. Liquid reorientation and capillary pumping to establish equilibrium configurations for various system geometries, observed during various free-fall (drop-tower) low-g tests, are also presented. Several passive low-g fluid storage and transfer systems are discussed. These systems use surface tension forces to control the liquid/vapor interface and provide gas-free liquid transfer and liquid-free vapor venting

    Experimental study of transient liquid motion in orbiting spacecraft

    Get PDF
    A test program was conducted involving forty-five drops of liquid propellant in instrumented tanks. Biaxial, low-g accelerations were applied to the model propellant tanks during free-fall testing, and forces exerted during liquid reorientation were measured and recorded. High speed photographic records of the liquid reorientation were also made. The test data was used to verify a mechanical analog which portrays the liquid as a point mass moving on an ellipsoidal constraint surface. The mechanical analog was coded into two FORTRAN 4 digital computer programs. Results showed excellent correlation between test data and analytical predictions of reorientation forces and liquid center of mass motion, verifying the basic analytical approach

    Experimental study of transient liquid motion in orbiting spacecraft

    Get PDF
    The results are presented of a twofold study of transient liquid motion such as that which will be experienced during orbital maneuvers by space tug. A test program was conducted in a low-g test facility involving twenty-two drops. Biaxial, low-g accelerations were applied to an instrumented, model propellant tank during free-fall testing, and forces exerted during liquid reorientation were measured and recorded. Photographic records of the liquid reorientation were also made. The test data were used to verify a mechanical analog which portrays the liquid as a point mass moving on an ellipsoidal constraint surface. The mechanical analog was coded into a FORTRAN IV digital computer program: LAMPS, Large AMPlitude Slosh. Test/analytical correlation indicates that the mechanical analog is capable of predicting the overall force trends measured during testing

    Passive Retention/Expulsion Methods for Subcritical Storage of Cryogens

    Get PDF
    Development of passive retention/expulsion system for subcritical storage of cryogenic material during low gravity situation

    Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57

    Get PDF
    The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives
    • …
    corecore