38 research outputs found

    Manual for starch gel electrophoresis: A method for the detection of genetic variation

    Get PDF
    The procedure to conduct horizontal starch gel electrophoresis on enzymes is described in detail. Areas covered are (I) collection and storage of specimens, (2) preparation of tissues, (3) preparation of a starch gel, (4) application of enzyme extracts to a gel, (5) setting up a gel for electrophoresis, (6) slicing a gel, and (7) staining a gel. Recipes are also included for 47 enzyme stains and 3 selected gel buffers. (PDF file contains 26 pages.

    Integration of a MicroCAT Propulsion System and a PhoneSat Bus into a 1.5U CubeSat

    Get PDF
    NASA Ames Research Center and the George Washington University have developed an electric propulsion subsystem that can be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The three thrusters were controlled by a SmartPhone that was running the PhoneSat software. The subsystem is fully operational and it requires low average power to function (about 0.1 W). The interface consists of a microcontroller that sends a trigger pulses to the PPU (Plasma Processing Unit), which is responsible for the thruster operation. Frequencies ranging from 1 to 50Hz have been tested, showing a strong flexibility. A SmartPhone acts as the main user interface for the selection of commands that control the entire system. The micro cathode arc thruster MicroCAT provides a high 1(sub sp) of 3000s that allows a 4kg satellite to obtain a (delta)V of 300m/s. The system mass is only 200g with a total of volume of 200(cu cm). The propellant is based on a solid cylinder made of Titanium, which is the cathode at the same time. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of MicroCATs to perform attitude control and orbital correcton maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and PPU inside a 1.5U CubeSat together with the PhoneSat bus into a 1.5U CubeSat. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone byros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary CubeSat missions

    Modular Pulsed Plasma Electric Propulsion System for Cubesats

    Get PDF
    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development

    Micro Cathode Arc Thruster for PhoneSat: Development and Potential Applications

    Get PDF
    NASA Ames Research Center and the George Washington University are developing an electric propulsion subsystem that will be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The interface consists of a microcontroller that sends a trigger pulse to the Pulsed Plasma Unit that is responsible for the thruster operation. A Smartphone is utilized as the main user interface for the selection of commands that control the entire system. The propellant, which is the cathode itself, is a solid cylinder made of Titanium. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of CATs to perform attitude control and orbital correction maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and the PPU inside a 1.5U CubeSat together with the PhoneSat bus. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone gyros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary small satellite missions

    Effect of organic tomato (Lycopersicon esculentum) extract on the genotoxicity of doxorubicin in the Drosophila wing spot test

    Get PDF
    The consumption of organic tomatoes (ORTs) reduces the risk of harmful effects to humans and the environment caused by exposure to toxic agrochemicals. In this study, we used the somatic mutation and recombination test (SMART) of wing spots in Drosophila melanogaster to evaluate the genotoxicity of ORT and the effect of cotreatment with ORT on the genotoxicity of Doxorubicin® (DXR, a cancer chemotherapeutic agent) that is mediated by free radical formation. Standard (ST) cross larvae were treated chronically with solutions containing 25%, 50% or 100% of an aqueous extract of ORT, in the absence and presence of DXR (0.125 mg/mL), and the number of mutant spots on the wings of emergent flies was counted. ORT alone was not genotoxic but enhanced the toxicity of DXR when administered concomitantly with DXR. The ORT-enhanced frequency of spots induced by DXR may have resulted from the interaction of ORT with the enzymatic systems that catalyze the metabolic detoxification of this drug

    Development and Characterization of the Heated-Anode Cathode Arc Thruster (HA-CAT)

    No full text
    A modern approach to satellite based experimentation has evolved from large, multi-instrumented satellites, to cheaper, smaller, almost disposable yet still reliable small spacecrafts. These small satellites are either sent to the International Space Station (ISS) to be dropped out into low earth orbit (LEO), or dropped off as a secondary payload into various orbits. While it is cheap to have small spacecraft accomplishing these missions, the lifetime expectancy is very short. Currently there are no commercialized propulsion systems that exist to keep them flying for prolonged periods of time. Recently researched at the Micro Propulsion and Nanotechnology Lab (MPNL), at the George Washington University (GWU), have been developments of a variety of Vacuum Arc Thrusters (VAT's) dubbed Micro-Cathode Vacuum Arc Thrusters (μCATs). μCAT's provide an inert electric means of propulsion for small spacecraft. The issue with these μCATs has been their efficiency levels and low amounts of thrust that they provide. The μCATs can provide μN levels of thrust per pulse. While being proficient for small spacecrafts, an increase in thrust is highly sought for, but the improvements must retain a small footprint and low power consumption. The topic of this thesis is the development and characterization of a new type of μCAT. The interest in this new design has been conceptualized based on experiments for plasma coating techniques. By utilizing the physics of evaporation, which has been used to decrease macroparticles (MP's) for thin film deposition, it has been theorized to also be applied to VAT technology. The concept is to increase levels of thrust with the μCAT, and provide higher levels of efficiency. This effect can be created without many additional components nor multiple additional loads to the thruster subsystem. Development of this new mechanic for thruster technology has been investigated through a variety of tests for fundamental proofs of concept. Running in two operations modes, the Heated-Anode Cathode Arc Thruster (HA-CAT), has undergone current efficiency tests, mass measurements, and cross examination through the use of a Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). This research hopes to explore an old territory of plasma engineering for future developments with μCAT and VAT technology

    Enslaved men, women, and children listed on estate inventory of Jacob Garrett

    No full text
    Enslaved men, women, and children listed on estate inventory of Jacob Garrett. Enslaved individuals include: Hager, Sam, Austin, Rose and twin children, Jake, Sarah and children Nancy and Isaac, Bill, Lucy, Tom, Mary, and Peter
    corecore