33 research outputs found
Two-qubit sweet spots for capacitively coupled exchange-only spin qubits
The implementation of high fidelity two-qubit gates is a bottleneck in the
progress towards universal quantum computation in semiconductor quantum dot
qubits. We study capacitive coupling between two triple quantum dot spin qubits
encoded in the , decoherence-free subspace -- the
exchange-only (EO) spin qubits. We report exact gate sequences for CPHASE and
CNOT gates, and demonstrate theoretically, the existence of multiple two-qubit
sweet spots (2QSS) in the parameter space of capacitively coupled EO qubits.
Gate operations have the advantage of being all-electrical, but charge noise
that couple to electrical parameters of the qubits cause decoherence. Assuming
noise with a 1/f spectrum, two-qubit gate fidelities and times are calculated,
which provide useful information on the noise threshold necessary for
fault-tolerance. We study two-qubit gates at single and multiple parameter
2QSS. In particular, for two existing EO implementations -- the resonant
exchange (RX) and the always-on exchange-only (AEON) qubits -- we compare
two-qubit gate fidelities and times at positions in parameter space where the
2QSS are simultaneously single-qubit sweet spots (1QSS) for the RX and AEON.
These results provide a potential route to the realization of high fidelity
quantum computation.Comment: Main text (16 pages, 6 figures). Supplementary material (24 pages, 6
figures). Minor typographical errors fixed. Discussion added. Figures 5 and 6
reordere
Tunable spin-selective loading of a silicon spin qubit
The remarkable properties of silicon have made it the central material for
the fabrication of current microelectronic devices. Silicon's fundamental
properties also make it an attractive option for the development of devices for
spintronics and quantum information processing. The ability to manipulate and
measure spins of single electrons is crucial for these applications. Here we
report the manipulation and measurement of a single spin in a quantum dot
fabricated in a silicon/silicon-germanium heterostructure. We demonstrate that
the rate of loading of electrons into the device can be tuned over an order of
magnitude using a gate voltage, that the spin state of the loaded electron
depends systematically on the loading voltage level, and that this tunability
arises because electron spins can be loaded through excited orbital states of
the quantum dot. The longitudinal spin relaxation time T1 is measured using
single-shot pulsed techniques and found to be ~3 seconds at a field of 1.85
Tesla. The demonstration of single spin measurement as well as a long spin
relaxation time and tunability of the loading are all favorable properties for
spintronics and quantum information processing applications.Comment: 4 pages, 3 figures, Supplemental Informatio
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit
The similarities between gated quantum dots and the transistors in modern
microelectronics - in fabrication methods, physical structure, and voltage
scales for manipulation - have led to great interest in the development of
quantum bits (qubits) in semiconductor quantum dots. While quantum dot spin
qubits have demonstrated long coherence times, their manipulation is often
slower than desired for important future applications, such as factoring.
Further, scalability and manufacturability are enhanced when qubits are as
simple as possible. Previous work has increased the speed of spin qubit
rotations by making use of integrated micromagnets, dynamic pumping of nuclear
spins, or the addition of a third quantum dot. Here we demonstrate a new qubit
that offers both simplicity - it requires no special preparation and lives in a
double quantum dot with no added complexity - and is very fast: we demonstrate
full control on the Bloch sphere with -rotation times less than 100 ps in
two orthogonal directions. We report full process tomography, extracting high
fidelities equal to or greater than 85% for X-rotations and 94% for
Z-rotations. We discuss a path forward to fidelities better than the threshold
for quantum error correction.Comment: 6 pages, excluding Appendi
Pauli Spin Blockade and Lifetime-Enhanced Transport in a Si/SiGe Double Quantum Dot
We analyze electron-transport data through a Si/SiGe double quantum dot in terms of spin blockade and lifetime-enhanced transport (LET), which is transport through excited states that is enabled by long spin-relaxation times. We present a series of low-bias voltage measurements showing the sudden appearance of a strong tail of current that we argue is an unambiguous signature of LET appearing when the bias voltage becomes greater than the singlet-triplet splitting for the (2,0) electron state. We present eight independent data sets, four in the forward-bias (spin-blockade) regime and four in the reverse-bias (lifetime-enhanced transport) regime and show that all eight data sets can be fit to one consistent set of parameters. We also perform a detailed analysis of the reverse-bias (LET) regime, using transport rate equations that include both singlet and triplet transport channels. The model also includes the energy-dependent tunneling of electrons across the quantum barriers and resonant and inelastic tunneling effects. In this way, we obtain excellent fits to the experimental data, and we obtain quantitative estimates for the tunneling rates and transport currents throughout the reverse-bias regime. We provide a physical understanding of the different blockade regimes and present detailed predictions for the conditions under which LET may be observed
Pauli spin blockade and lifetime-enhanced transport in a Si/SiGe double quantum dot
We analyze electron transport data through a Si/SiGe double quantum dot in
terms of spin blockade and lifetime-enhanced transport (LET), which is
transport through excited states that is enabled by long spin relaxation times.
We present a series of low-bias voltage measurements showing the sudden
appearance of a strong tail of current that we argue is an unambiguous
signature of LET appearing when the bias voltage becomes greater than the
singlet-triplet splitting for the (2,0) electron state. We present eight
independent data sets, four in the forward bias (spin-blockade) regime and four
in the reverse bias (lifetime-enhanced transport) regime, and show that all
eight data sets can be fit to one consistent set of parameters. We also perform
a detailed analysis of the reverse bias (LET) regime, using transport rate
equations that include both singlet and triplet transport channels. The model
also includes the energy dependent tunneling of electrons across the quantum
barriers, and resonant and inelastic tunneling effects. In this way, we obtain
excellent fits to the experimental data, and we obtain quantitative estimates
for the tunneling rates and transport currents throughout the reverse bias
regime. We provide a physical understanding of the different blockade regimes
and present detailed predictions for the conditions under which LET may be
observed.Comment: published version, 18 page
Symmetry breaking and spin-orbit coupling for individual vacancy-induced in-gap states in MoS2 monolayers
Spins confined to point defects in atomically-thin semiconductors constitute
well-defined atomic-scale quantum systems that are being explored as single
photon emitters and spin qubits. Here, we investigate the in-gap electronic
structure of individual sulphur vacancies in molybdenum disulphide (MoS2)
monolayers using resonant tunneling scanning probe spectroscopy in the Coulomb
blockade regime. Spectroscopic mapping of defect wavefunctions reveals an
interplay of local symmetry breaking by a charge-state dependent Jahn-Teller
lattice distortion that, when combined with strong (~100 meV) spin-orbit
coupling, leads to a locking of an unpaired spin-1/2 magnetic moment to the
lattice at low temperature, susceptible to lattice strain. Our results provide
new insights into spin and electronic structure of vacancy induced in-gap
states towards their application as electrically and optically addressable
quantum systems
A fast "hybrid" silicon double quantum dot qubit
We propose a quantum dot qubit architecture that has an attractive
combination of speed and fabrication simplicity. It consists of a double
quantum dot with one electron in one dot and two electrons in the other. The
qubit itself is a set of two states with total spin quantum numbers
(S=\half) and S_z = -\half, with the two different states being singlet and
triplet in the doubly occupied dot. The architecture is relatively simple to
fabricate, a universal set of fast operations can be implemented electrically,
and the system has potentially long decoherence times. These are all extremely
attractive properties for use in quantum information processing devices.Comment: Includes text and supplemental material, 12 pages, 9 figure