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Pauli Spin Blockade and Lifetime-Enhanced Transport in a Si/SiGe double quantum
dot

C. B. Simmons,1 Teck Seng Koh,1 Nakul Shaji,1 Madhu Thalakulam,1 L. J.

Klein,1 Hua Qin,1 H. Luo,1 D. E. Savage,1 M. G. Lagally,1 A. J. Rimberg,2 Robert

Joynt,1 Robert Blick,1 Mark Friesen,1 S. N. Coppersmith,1 and M. A. Eriksson1

1University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

We analyze electron transport data through a Si/SiGe double quantum dot in terms of spin
blockade and lifetime-enhanced transport (LET), which is transport through excited states that is
enabled by long spin relaxation times. We present a series of low-bias voltage measurements showing
the sudden appearance of a strong tail of current that we argue is an unambiguous signature of LET
appearing when the bias voltage becomes greater than the singlet-triplet splitting for the (2,0)
electron state. We present eight independent data sets, four in the forward bias (spin-blockade)
regime and four in the reverse bias (lifetime-enhanced transport) regime, and show that all eight
data sets can be fit to one consistent set of parameters. We also perform a detailed analysis of
the reverse bias (LET) regime, using transport rate equations that include both singlet and triplet
transport channels. The model also includes the energy dependent tunneling of electrons across
the quantum barriers, and resonant and inelastic tunneling effects. In this way, we obtain excellent
fits to the experimental data, and we obtain quantitative estimates for the tunneling rates and
transport currents throughout the reverse bias regime. We provide a physical understanding of the
different blockade regimes and present detailed predictions for the conditions under which LET may
be observed.

PACS numbers: 73.23.Hk, 73.21.La, 73.63.Kv, 85.35.Gv, 81.05.Cy, 03.67.Lx

I. INTRODUCTION

Spins in quantum dots are good candidates for qubits,
due to fast and reliable electrostatic gating, long co-
herence times, and well known methods for large-scale
fabrication.1–5 Spin coherence times can be particularly
long in silicon devices,6–11 because the naturally abun-
dant 28Si isotope has nuclear spin zero, and because
Si has a relatively small spin-orbit coupling, because of
its relatively small atomic mass. Isotopic purification
could produce devices with excellent qualities for quan-
tum computing.12,13

Recent progress in GaAs quantum dots has enabled
the manipulation of exchange coupling in a two-electron
double dot,14 and has led to single-shot readout of one-15

and two-electron16 spin states in a single dot. The latter
experiment makes use of energy dependent tunneling to
provide high visibility in the measurement. The simplest
explanation of this effect is that a larger tunnel barrier
causes a slower tunneling rate. The effect is of funda-
mental interest for quantum phenomena, and can lead
to very precise measurement techniques in the context
of quantum information. Energy dependent tunneling
effects in quantum dots have also been studied in sev-
eral other recent experiments.17–22 Silicon-based devices
should exhibit a strong energy dependence in tunneling,
since the effective mass in silicon, on which the tunneling
rate depends exponentially,23 is relatively large.

Semiconductor double quantum dots are tunable struc-
tures that enable the coupling of two small regions of
bound electrons to each other and, often, to two leads,
enabling measurement of an electron transport current

through the system.24 Double quantum dots can display
an effect known as Pauli spin blockade,18,25,26 where cur-
rent flow proceeds in a cycle that first loads either a
two-electron singlet state with one electron in each dot,
the S1,1 state, or a two-electron triplet T1,1 state that
is nearly degenerate with the singlet. For the cycle to
proceed without blockade in either case, both the singlet
S2,0 and the triplet T2,0 states, where both electrons are
on the left dot, must be lower in energy than their corre-
sponding (1,1) states. There are regions in gate-voltage
space where this is not true, and the striking absence of
current that arises in such regions is known as spin block-
ade. Spin blockade makes double dots extremely useful
for quantum dot spin qubits, because it provides a robust
means to perform spin readout.14,19,27–30

Spin blockade has been reported in silicon quantum
dots formed using both Si metal-oxide-semiconductor
structures31 and Si/SiGe heterostructures.32 In both
cases, the spin blockade results displayed many similar-
ities with previous observations of spin blockade, most
of which have been made in GaAs/AlGaAs-based dou-
ble quantum dots. In Ref. 32, we also reported measure-
ments of current flow for the opposite voltage bias. In this
regime, we observed unusual patterns in two-dimensional
maps of the current as a function of a pair of gate volt-
ages. The most striking observation was a strong ‘tail’ of
current, which appeared in a supposedly blockaded por-
tion of the current map. This behavior was attributed
to the combined effects of slow triplet-singlet relaxation
and strong energy dependent tunneling, the two of which
together enable current to flow through long-lived ex-
cited states. For this reason, the phenomena were labeled
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‘lifetime-enhanced transport,’ or LET. Recently, LET be-
havior has also been observed in transport through indi-
vidual donors in silicon.33

In this paper, we present a large quantity of additional
data and analyze these data in detail, showing that they
can all be fit using one consistent set of parameters. We
analyze eight two-dimensional plots of current as a func-
tion of a pair of gate voltages, four different biases in
each direction of current flow through the double dot.
Spin blockade is observed in the direction of current flow
in which it is expected. For the opposite voltage bias,
the unusual current patterns associated with LET are
observed, in agreement with our previous results.32 To
test the explanation that the ‘tail’ of current arises be-
cause of LET, we fit all eight sets of data in parallel,
determining optimum values for the three slopes of the
edges of the bias triangles, the lengths of the sides of the
bias triangles, and the positions of those triangles. The
results are shown to be consistent with both spin block-
ade and LET. In particular, it is shown that we cannot
obtain consistent results for the length of the triangles if
the current tails are included in the triangles. The fitting
and the subsequent delineation of the bias triangles also
enables us to improve our measurements of the singlet-
triplet splittings in both the (2,0) state, corresponding to
two electrons in the left dot, and the (1,1) state, corre-
sponding to one electron in each dot.

Building on accurate fitting of the bias triangles, we
investigate details of the strong dependence of the trans-
port current on the gate voltages. Within the triangles,
we obtain consistent and quantitative fits to the data by
explicitly incorporating strong energy-dependent tunnel-
ing as well as tunneling through both singlet and triplet
channels. Both coherent34,35 and incoherent36 processes
contribute strongly to the energy dependence of the elec-
tron tunneling rates, and we develop a general model for
transport in a double dot, including both inelastic and
resonant effects, using the master equation approach. We
show that this model can be used to perform a quantita-
tive fit of the transport data and that relevant parameters
can be extracted from the data.

Our success in interpreting a large body of experimen-
tal data with a single consistent set of fitting parame-
ters is strong evidence in support of the interpretation of
the current tail in terms of transport through the triplet
channel, as first described in Ref. 32.

The paper is organized as follows. Sec. II presents a
simple argument for the existence of the LET tail based
on data at small bias voltages and involves an absolute
minimum of data analysis. Sec. III presents our experi-
mental procedures. The methods used to fit the bias tri-
angles are presented in Sec. IV, and the procedure used
to position and scale the bias triangles are presented in
Sec. V. The phenomenon of energy-dependent tunneling
is prominent in the data, and a theoretical model that de-
scribes this effect as it appears in the data is presented in
Sec. VI. In Sec. VII, results from the model are compared
to the experimental data, and important phenomenolog-
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FIG. 1: The transport current through a double quantum dot
for a device with gate arrangement shown in the inset to (a)
at three different source-drain biases VSD: (a) −0.014 mV,
(b) −0.114 mV, (c) −0.174 mV. Panel (c) shows the sudden
appearance of a current tail. (d) Lengths, la, lb and lc1 in
panels (a) to (c) are measured from the peak of the current
to the upper left tip of a 1 pA contour around the peak. lc2
is the length of the tail from its peak at the lower right to the
tip of a 1 pA contour on the upper left. lc3 is the length that
would be extracted if the ‘tail’ were part of the conventional
bias triangle. It is measured from the peak of the current in
the tail to the tip of the upper left-most 1 pA contour; i.e., it
is essentially the sum of lc1 and lc2 . The graph in (d) shows
the ratio of the lengths, as measured by their projection onto
the left-hand gate voltage axis, divided by VSD. The four
lengths la, lb, lc1 , and lc2 are consistent with each other and
with the description of the ‘tail’ in terms of LET. The blue
length lc3 is clearly too long, and thus the description of the
physics in terms of LET and the concept of a current ‘tail’
extending out of the conventional bias triangle are necessary
to understand the data in panels (a)-(c). (e) SEM image of
the gate pattern with the gates labeled in red. The gates were
tuned so that the device contained a double quantum dot.32

(f) Schematic diagram of the energy axes for the double dot.

ical parameters are reported. The paper concludes with
a discussion in Sec. VIII.

II. SIMPLE DEMONSTRATION OF LET

The key observable feature of LET is a strong tail of
current protruding beyond the end of the base of the con-
ventional bias triangle. Careful fitting of the triangles to
many sets of data obtained with a variety of source-drain
bias voltages, as we do below, is a good way to test for
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the existence of this tail. However, before embarking on
such a detailed analysis, we first provide a simple argu-
ment for our LET interpretation of the data.

Figure 1(a-c) show plots of the current through a dou-
ble quantum dot as a function of two gate voltages. The
sample is described in Sec. III below, and the sign of the
voltage bias is opposite to that in which spin blockade
would be observed. Fig. 1(a) is obtained at very low
bias, such that current flows only very near the triple
points.24 In particular, the bias voltage is smaller than
the singlet-triplet splitting. Fig. 1(b) shows data at a
slightly larger voltage. As expected, the region of current
flow is correspondingly larger, and it has the same over-
all shape. Fig. 1(c) is acquired at a bias voltage slightly
higher still. Again, the primary region of current flow is
correspondingly larger. However, a new feature suddenly
appears in the data: a tail of current that extends to the
lower right. This tail completely changes the shape of
the current pattern.

To be quantitative, we consider the lengths of the var-
ious current features visible in Fig. 1(a)-(c). The bias
triangles, and therefore the lengths of these current fea-
tures, should scale linearly with the applied bias volt-
age. Panel (d) shows in green the ratio of the lengths
of the main current features identified in panels (a)-(c),
projected onto the left-hand voltage axis, to the applied
bias voltage VSD. These lengths were measured, as in-
dicated, from the point where the current peaks at the
lower right, to the extremum at the upper left on a 1 pA
contour. The LET interpretation predicts that the ratios
of lengths la, lb, and lc1 to VSD should be equal, as shown
in panel (d). In particular, lb and lc1 , which have small
error bars, are nearly identical. Further, the length of the
tail is the same as the length of the main current region
in Fig. 1(c): that is, lc1 = lc2. This is also consistent with
the LET interpretation presented below and in Ref. 32.
In contrast, if the base of the triangle were located at
the end of the tail in Fig. 1(c), the length of the region of
current flow would be as is shown in blue and labelled lc3.
As is clear from Fig. 1(d), such a length is incompatible
with length lb from Fig. 1(b). Note that the length la has
a large error bar, because the source-drain voltage VSD
is so small that the uncertainty in that quantity is larger
than its value; panel (a) is included in this discussion to
emphasize that current is indeed visible at very low bias
voltage, indicating that current flows at the triple points
themselves. If the base of the bias triangle were located
at the end of the tail in Fig. 1(c), no current would be
observed at the triple point. In such an interpretation,
the triple point would be located directly below the tail,
and this would be incompatible with the observation of
current at the triple point in Fig. 1(a).

These simple arguments make clear that the LET tail
does indeed protrude beyond the base of the bias triangle.
The rest of this paper presents an analysis of a large
quantity of data, all of which is analyzed together and
self-consistently. The results of our analysis provide a
complete and quantitative understanding of the data in

terms of spin blockade and LET.

III. EXPERIMENT

The data we discuss here were acquired from a dou-
ble quantum dot formed in a top-gated Si/Si0.7Ge0.3
heterostructure.37–39 The quantum well was nominally
12 nm thick, and it contained a two-dimensional elec-
tron gas of density n = 4 × 1011 cm−2 and mobility
40, 000 cm2/Vs. The gate design for this device, repro-
duced from Ref. 32 as Fig. 1(e), has a single plunger gate.
For the data presented here, a gate originally intended for
charge sensing was pressed into service to tune the dot
occupation, providing the second axis for manipulation of
the double dot in gate-voltage space.32 Here we focus on
the region in gate-voltage space where the device exhibits
the behavior of a double-dot; this region occurs between
a regime in which the device acts as a single dot and
a region in which no measurable current flows through
the device.32 Unlike more recent work,40,41 the absolute
number of electrons in the dots is not known, and all ref-
erences to the number of electrons refers to the valence
number; there could be a closed shell underneath the va-
lence electrons, and the existence of that shell would not
be apparent in the data.

Figure 2 shows the current I through the double quan-
tum dot as a function of gate voltages VG and VCS. Each
of the panels in Fig. 2 contains two features that are
similar to each other. These features are conventionally
called the ‘electron’ and ‘hole’ triangles,24 and we adopt
this language here. The ‘electron’ system is called so be-
cause it can be described in terms of the electron occupa-
tions (1,1), (2,0), and (1,0). The ‘hole’ system can be de-
scribed in terms of the electron occupations (2,1), (2,0),
and (1,1). However, these states result in energy level di-
agrams that are more complicated than those of the elec-
tron triangle. A complementary description of transport
in terms of the hole states (0,1)h, (0,2)h, and (1,1)h allows
us to draw a set of energy level diagrams that are analo-
gous to the diagrams for the ‘electron’ system. This hole
picture has proven useful in some situations.24 However,
it is difficult to include excited states of the zero-hole
state in a simple way. Thus, we will stick with the three-
electron diagrams here, in spite of their complexity.42 De-
tailed plots of the chemical potentials relevant for model-
ing of transport with both positive and negative voltage
bias are shown in the Appendix in Fig. 8. We empha-
size that, although for clarity and connection with the
existing literature we retain the electron and hole ter-
minology, the chemical potential diagrams for the latter
in Fig. 8 actually describe three-electron states, not hole
states. In this paper, we refer to chemical potentials for
electrons only, and never holes.

The data for positive source-drain bias (column one of
Fig. 2) exhibit spin blockade. We refer to this bias di-
rection as ‘forward bias.’ The data in this bias direction
are largely understandable using the conventional con-
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FIG. 2: The current through the double quantum dot as a function of the gate voltages VG and VCS. Panels (a)–(p) correspond
to eight different bias voltages VSD as labelled. Column one shows data in the spin blockade regime (forward bias). Column
three shows the data in the LET regime (reverse bias). Columns two and four show the same data as columns one and three,
with the calculated bias triangle boundaries superimposed on the data, as explained in the main text. The data in panels (a)
and (g) have been presented previously in Ref. 32.

cepts of Pauli spin blockade; indeed, the consistency of
these data with classic spin blockade behavior provides
strong evidence that our assignment of the valence elec-
tron occupancies is correct. There are, however, interest-
ing resonances observable, e.g., where transport through
the triplet channel of the electron triangle overlaps with
transport though the singlet channel of the hole triangle.

Also, the current in the spin blockade regime extends by
small amounts past the conventional tips of the bias tri-
angles. We discuss these features and others in Sec. VIII
below.

The data for negative source-drain bias (column three
of Fig. 2) show unusual patterns in the current as a func-
tion of gate voltages VG and VCS. We refer to this bias
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triplet triangles for forward bias. The gray areas show the re-
gion in which current is allowed in conventional spin blockade.
In addition, current is expected along segments BA and JI,
because on these lines the (1,1) singlet and triplet are aligned
with the leads, and spin exchange is possible. In the data of
Fig. 2, segments BF, which has low slope, and JH, which has a
slightly higher slope, are strongly visible and thus good candi-
dates for fitting. (b) Schematic diagrams showing the singlet
and triplet triangles for reverse bias. Points U and M are out-
side the conventional bias triangle. (c), (d) Energy levels in a
double quantum dot, with one fixed electron in the left-hand
dot. Panel (c) corresponds to forward bias of the the double
dot, while panel (d) corresponds to reverse bias. Electrons
may transit via the singlet or triplet channels. The upper and
lower plots show the chemical potentials at two example gate
voltages. In the upper schematics of (c) and (d), electrons can
transit through both the singlet and the triplet channels via
an energetically downhill path. In the lower panel of (c), spin
blockade is present, as the triplet channel is energetically up-
hill. The lower panel of (d) is the lifetime-enhanced transport
(LET) regime, in which the singlet channel is energetically
uphill, and current will be blockaded unless electrons tunnel
preferentially through the triplet channel.

direction as ‘reverse bias.’ Consistent with the arguments
in Sec. II above and in Ref. 32, there are regions of current
extending outside the conventional bias triangle regions
— the only regions in which transport is conventionally
observed. We have argued that current is observed out-
side the bias triangles due to an effect named lifetime-
enhanced transport, or LET. The essential prerequisite
for observing this effect is that long relaxation times from
an excited state, such as the (2,0) spin triplet state dis-
cussed below, can leave open a fast, energetically down-
hill current path. In order to check this argument and

understand the features shown in the right two columns
of Fig. 2, it is important to determine with a fair degree
of precision the sizes and positions of the bias triangles.

The data sets in Fig. 2(a) and (g) were previously re-
ported in Ref. 32. The bias voltages were reported in
that paper to be +0.2 mV for the data in panel (a) and
−0.3 mV for panel (g), but these values were slightly
affected by an offset in the current preamplifier. This
offset was discovered when we analyzed four additional
data sets taken at very small bias voltage VSD. To de-
termine the size of the offset, we examined several data
sets with small VSD, including Figs. 1(a) and (b). Cuts
through the data were taken along a line connecting the
two triple points (see explanation, below). The peak cur-
rent, the full-width-at-half-maximum, and the area un-
der the sampled cuts were computed for each cut. Each
of these quantities was assumed to depend linearly on
VSD at small bias, allowing us to determine a bias offset
of 0.026 mV. We emphasize that the source-drain biases
indicated in each figure in this paper have been corrected
to reflect this offset.

IV. FITTING

A. Overview

At infinitesimal bias voltages VSD, the Fermi levels of
the left lead L and the right lead R are nearly equal,
and current flows through the double dot only when
the Fermi energies in both leads and the chemical po-
tentials of both quantum dots are aligned, i.e., when
ELF ' ERF ' E1 ' E2. Here, ELF (ERF ) refers to the
Fermi energy of the left (right) lead and E1(E2) refers to
the chemical potential of the left (right) dot. When these
energies are equal, the charge configurations of interest
are degenerate, and a ‘triple point’ is observed in the
data.24 For the electron system, the degenerate double
dot electron configurations are (1, 0), (1, 1), and (2, 0),
while for the hole system these electron occupations are
(1, 1), (2, 0), and (2, 1). The data in Fig. 1(a) were ac-
quired at a small VSD. As VSD is increased, plots of the
current as a function of E1 and E2 (or, more conveniently,
the gate voltages most directly controlling E1 and E2)
reveal these triple points expanding into ‘bias-triangles’
arranged regularly in the well-known pattern known as a
honeycomb diagram.24

The conventional bias triangle is defined by the region
in gate voltage space in which the double dot ground
states (in this case the singlet states) are both energeti-
cally downhill and within the source-drain bias window.
We refer to these as the ‘singlet triangles.’ There are
analogous ‘triplet triangles’ defined by similar conditions
for the excited triplet states. Separate singlet and triplet
triangles can be defined for both the electron and hole
systems. For electrons in forward bias, transport occurs
through the sequence (1,0)→ (1,1)→ (2,0), while for the
hole regime, in forward bias, transport occurs through
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FIG. 4: Examples showing how the triangle boundaries and
slopes are determined from the data. (a) Forward bias: the
positions of the data cuts (1-7) that we use to determine the
low slope. (b) Reverse bias: the positions of the data cuts that
we use to determine the high slope (1-8) and the low slope
(9-15). (c) For the same data as panel (a), the red circles
mark the points used to determine the base slope for this
data set; their centroid is marked by the red square. A white
line with the mean base slope is drawn through the centroid.
The red crosses mark points used to determine low and high
triangle slopes; the two white lines are obtained by linear
fits through the crosses. (d) For the same data as panel (b),
the black crosses mark points used to determine low and high
triangle slopes; the three white lines are obtained by linear fits
through the crosses. The separation between the triple points
is labeled d. (e) Example fitting results for cut 7 in panel (a).
The dashed lines correspond to the Fermi function and the
energy dependent tunnel rate, and the red line corresponds
to their product. The vertical red line indicates the triangle
boundary. (f) Example of two independent fits to cut 5 in
panel (b), and the corresponding triangle boundaries.

the electron sequence (2,1)→ (1,1)→ (2,0). Figures 3(a)
and (b) show schematic diagrams of these four distinct
triangles for the cases of forward bias in panel (a) and
reverse bias in panel (b). Note that the lengths BA and

AC represent the singlet-triplet energy splittings in the
(2,0) and (1,1) states, respectively. The magnitude of the
measured current varies significantly across each triangle
because of energy-dependent tunneling;17–22 the tunnel-
ing rate from the lead decreases as the tunnel barrier
increases, which occurs as the energies of the relevant
levels in the dots are lowered below the Fermi level. The
effects of energy-dependent tunneling are more marked
in Si/SiGe dots than in GaAs dots, because electrons in
silicon have larger effective mass,23 and these effects are
discussed in more detail below, in Sec. VI.

Points Q, R, X, W, and V in Fig. 3(b) lie within the
conventional bias triangle. Point U lies outside this trian-
gle, but within the triplet triangle. Fig. 3(d) shows exam-
ple energy level arrangements for points within both the
singlet and triplet triangles (upper cartoon), and points
such as U, that lie outside the singlet triangle but within
the triplet triangle (lower cartoon). In the conventional
picture, without LET, the regions of strong current flow
are the blue singlet triangles, while the regions of the red
triplet triangles that do not overlap the singlet triangles
are blockaded. A major point of this paper is to demon-
strate that the current visible in the lower right hand
corners of the panels in column three of Fig. 2 arises
because significant current is flowing through the triplet
states outside the conventional bias triangle. Because
of its shape, we refer to this feature in the data as the
triplet ‘tail.’ LET lifts the blockade condition, giving rise
to the triplet tail when tunnel rates and triplet-singlet re-
laxation times are appropriate — specifically, the triplet
must load enough faster than the singlet that a transport
current is measurable, even though tunneling through the
singlet channel is very slow.32

In order to understand how electrons move from one
lead to the other through the double dot system, it is nec-
essary to know the chemical potentials of each quantum
dot for particular occupancy states. Of particular signif-
icance are the chemical potentials associated with points
labeled with uppercase letters in Fig. 3(a) and (b). The
corresponding energy level diagrams are all presented in
the appendix. To understand the data in columns one
and three of Fig. 2, simultaneously and self-consistently,
we aim to determine the size and shape of the bias tri-
angles, and to position these triangles as accurately as
possible on the data. The end result of this analysis is
shown in the second and fourth columns of Fig. 2.

Our procedure is as follows: first, using data for all
biases and from both the electron and hole systems, we
obtain the three slopes that define the edges of the bias
triangles (see Fig. 1(f)); these are (i) the slope of the
base of the triangle (base slope), which characterizes the
direction in gate voltage space in which the chemical po-
tentials of the two dots are held constant relative to each
other, (ii) the low slope of one of the long edges (low
slope), which characterizes the direction in gate voltage
space in which the chemical potential of the right dot is
held constant with respect to the Fermi level of the right
lead, and (iii) the slightly higher slope of the other long
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edge (high slope), which characterizes the direction in
gate voltage space in which the chemical potential of the
left dot is held constant with respect to the Fermi level
of the left lead. Second, we determine the separation be-
tween the electron and the hole triangles, as well as the
scaling relation between the applied bias voltage and the
size of the triangles. Finally, we position the triangles on
the data sets in Fig. 2.

B. Determination of the base slope

The base slope joins the points B and J in Fig. 3(a)
and, similarly, the points Q and O in Fig. 3(b). Points
B and J are identified as small, solitary peaks in the
left-hand region of the forward bias experimental data
[column 1 of Fig. 2 and expanded in Fig. 7(a, b)]. Note
that the data were interpolated using the cubic spline
procedure,53 to more accurately identify the center of
the points, while keeping the functional form of the data
unchanged. The base slopes were obtained for each pair
of points (B,J), in all four forward bias data sets, and the
average value was calculated, with results summarized in
Table I. The base line for each forward bias data set is
obtained by determining the centroid position of a given
(B,J) pair, and then drawing a line with the average base
slope through the centroid. An example of this procedure
is shown in Fig. 4(c), with the centroid indicated as a red
square and the points B and J indicated by the red circles.

TABLE I: Base slopes obtained from the spin blockade data
of Fig. 2.

Bias (mV) Base slope

0.226 15.3
0.326 11.2
0.526 15.5
0.626 14.8

Base slope mean = 14.2
Standard deviation = 2.02

C. Determination of the low slope

Both the forward and reverse bias data possess features
that are useful for determining the low slope of the bias
triangles. We first consider the forward bias data along
the line segment AF shown in Fig. 3(a). Along this line,
the chemical potential of the left dot is variable, while
the chemical potential of the right dot is constant. The
current flow is nearly constant along AF, except for the
resonant peak, which we will discuss in Section VI. Thus,
the current depends only weakly on the chemical poten-
tial of the left dot. We then take data cuts parallel to
the base slope, crossing the line segment AF, as shown

in Fig. 4(a). Along a given cut, the current does not flow
uniformly and it does not fill up the whole bias trian-
gle. The strong suppression of the current above AF is
a signature of energy dependent tunneling. We conclude
that the current depends most strongly on the chemical
potential of the right dot, and that the right-hand tunnel
barrier forms the transport bottleneck.

In Section VII below, we provide detailed models for
energy dependent tunneling. However, in order to delin-
eate the edges of the bias triangle here, we simply point
out that the dominant contribution to the current along
the data cuts in Figs. 4(a) and (b) can be expressed as
follows:

I/e = fRΓR. (1)

Here,

fR =
[
e(E−ERF )/kBT + 1

]−1
(2)

is the Fermi function for the right lead, where E is the
chemical potential of the right dot, and ERF is the Fermi
level of the lead. The Fermi function defines the edge of
the forward bias triangle along the line AF, defined by
the condition E = ERF . The second function appearing
in Eq. (1) is the effective tunneling rate ΓR, from the
right lead to the right dot. To capture the effect of en-
ergy dependent tunneling, we will apply approximations
similar to those used in Refs. 21 and 22, and discussed in
greater detail in Sec. VII, leading to the prescription

ΓR = ΓR0e
(E−ERF )/ER0 , (3)

where ΓR0 is proportional to the attempt rate, and ER0

describes the scale for the energy dependent tunneling.
This exponentially decaying function suppresses the cur-
rent flow above line segment AF.

Equation (1) can be used to fit the data along the cuts
shown in Fig. 4(a) by assuming a linear relation between
the chemical potential of the right dot and the control
voltages VCS and VG. The proportionality constants,
the so-called ‘lever-arms’, are determined as part of the
fit. A typical result of the fitting procedure is shown in
Fig. 4(e). The vertical line on the plot represents the
boundary of the bias triangle, corresponding to the con-
dition E = ERF . The boundary positions for each of
the cuts in Fig. 4(a) were obtained in the same way, giv-
ing the points marked as red crosses in Fig. 4(c). The
edge of the bias triangle was then determined by fitting
a straight line through these points, with the result shown
in Fig. 4(c)

The low slope can also be investigated in the hole sys-
tem in the reverse bias regime, along the line segment
LM shown in Fig. 3(b). Data cuts are again taken paral-
lel to the base slope, as shown by the short lines on the
right-hand-side of Fig. 4(b). A function similar to Eq. (1)
was used to fit the data, to obtain the triangle boundary
along each cut. The results are shown as black crosses
superimposed on the right-hand side of Fig. 4(d). Again,
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we fit a straight line through these boundary points, ob-
taining the result shown in panel (d). The low slopes
were obtained in this way for 8 different data sets, as
summarized in Table II.

TABLE II: Low slopes obtained from both forward and re-
verse bias data.

VSD (mV) Low slope VSD (mV) Low slope

0.226 -2.25 -0.174 -1.94
0.326 -2.17 -0.274 -1.93
0.526 -2.24 -0.474 -1.97
0.626 -2.24 -0.574 -1.95

Low slope mean = -2.09
Standard deviation= 0.15

D. Determination of the high slope and the triple
point spacing

The high slope can also be determined from fits to
both forward and reverse bias data. In the case of for-
ward bias, we take data cuts though the hole data, along
lines parallel to the base slope. Along the line IH, indi-
cated in Fig. 3(a), the chemical potential of the left dot
is equal to the Fermi level of the left lead. For the hole
triangle, the energy dependent tunneling is rather weak.
The prominent features in the data along line segment
IH are mainly attributed to the Fermi function for the
left lead. We therefore adopt the following fitting form
for data near line segment IH:

I/e = (1− fL)ΓL, (4)

where the Fermi function fL and the energy dependent
tunnel rate ΓL are defined analogously to Eqs. (2) and
(3). The data cuts are fit as described above, for source-
drain biases VSD = 0.226, 0.526, and 0.626 mV. The
0.326 mV data set in Fig. 2(e) exhibits a discontinuity
along IH arising from a charging event. For that data
set alone, the fitting procedure is performed in the vicin-
ity of line segment JI rather than IH. The fitting results
for the triangle boundaries are shown as red crosses in
Fig. 4(c), for each data cut. The high slope is obtained
from a linear fit through the boundary points, as given
by the white line.

In the reverse bias regime, we also take data cuts paral-
lel to the base slope. In this case, the cuts extend across
the entire electron-hole system, as shown in Fig. 4(b).
We use form

I/e = fLΓL (5)

to fit the data. In this case, however, independent fits
are made to both the electron and the hole peaks, giving
typical results as shown in Fig. 4(f). Here, the verti-
cal lines represent the inferred locations of both triangle

boundaries. The resulting boundary locations are shown
as black crosses in Fig. 4(d). By fitting straight lines,
we obtain results for the high slope, as summarized in
Table III.

The fits to the reverse bias data provide a direct
method for determining the separation between the elec-
tron and hole triangles along the direction parallel to the
base slope. This separation is the triple point spacing,
and it is indicated by the distance d in Fig. 4(d). It is also
indicated, schematically, by the distance between points
Q and O in Fig. 3(b). The triple point spacing is the
same for all biases, and we therefore determine its value
by averaging the individual extracted values for d.

TABLE III: High slopes obtained from both forward and re-
verse bias data.

VSD (mV) High slope VSD (mV) High slope

0.226 -3.32 -0.174 -3.86
0.326 -3.75 -0.274 -4.06
0.526 -3.47 -0.474 -3.37
0.626 -3.59 -0.574 -3.71

High slope mean = -3.64
Standard deviation= 0.25

V. POSITIONING AND SCALING THE
TRIANGLES

It is now possible to draw the singlet and triplet bias
triangles. The shape of each triangle is known precisely
in terms of the high, low, and base slopes. In this section,
we explain how the sizes of the triangles are determined
and how they are positioned on the data.

The size of the triangles is proportional to the source-
drain bias. To determine the scaling, we focus on the
forward bias data sets. By using the triple point spac-
ing d, in combination with line fits of the type shown in
Fig. 4, the triangles for the forward bias data are com-
pletely determined. We extract a gate voltage-to-energy
proportionality constant for each forward bias data set
for both VCS and VG, and we calculate the mean values
of each. We use these constants to set the size of the tri-
angles for the reverse bias data. The sizes of the triangles
drawn in column 4 of Fig. 2 are all obtained using these
mean voltage-to-energy calibrations.

We now position the triangles in the forward bias
regime. Since line segment CD cannot be easily distin-
guished from AF in the forward bias data, the triplet tri-
angles are initially positioned by assuming that AF and
CD overlap. That is, we assume zero (1, 1) singlet-triplet
energy splitting. The actual (1, 1) singlet-triplet splitting
is determined later. We then determine the base position
of the triplet triangle by performing a Lorentzian fit to
a data cut along line segment BF, placing the triangle
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corner at the peak of the Lorentzian.

To position the singlet triangles on the reverse bias
data plots, we only need to determine a single point,
which we take to be point Q in Fig. 3(b). This point is
determined for each data set by fitting a Lorentzian to
a data cut along line segment RQ. Similarly, the triplet
triangles are positioned by performing a Lorentzian fit
to point U along the line segment VU. This method of
independently positioning the singlet and triplet triangles
provides a means of estimating the (1,1) singlet-triplet
splitting, which is observed as a slight shift in the edges
of the triangles. Note that, due to the lack of a straight
line of current for the two higher bias data sets, we use the
coordinates of the strongest current peak in that vicinity
to locate point U. This should lead to an overestimate
of the (1,1) singlet-triplet energy splitting in those two
cases.

The (2,0) singlet-triplet splitting is given by the dis-
tance between the bases of the singlet and triplet tri-
angles. These voltages are converted to energies using
our lever-arm calibrations. We then take a mean value
from all eight data sets, obtaining the result EST (2, 0) =
0.173 meV, as reported in Table IV. This value is inter-
esting, because it corresponds to the lowest excited state
that is not a spin excitation. In general, this degree of
freedom will involve an orbital parameter, and specifi-
cally, it can correspond to the valley degree of freedom.
As such, the mean value of EST (2, 0) provides a lower
bound on the valley splitting43–48 in dot 1.

We can compute the singlet-triplet splittings EST (1, 1)
in a similar manner. Such estimates can only be obtained
in the LET data sets, since the forward bias data sets
do not provide a good signature of the splitting. We
find that the standard deviation of EST (1, 1) is almost
as large as its mean value. Such a large uncertainty in
EST (1, 1) is not surprising, because its value is similar
to the estimated electron temperature during these mea-
surements, which is 145 mK. The resulting estimates for
EST (1, 1) is reported in Table IV.

TABLE IV: Singlet-triplet energy splitting.

VSD (mV) EST (1, 1) (meV) EST (2, 0) (meV)

-0.174 0.0078 0.170
-0.274 0.0044 0.174
-0.474 0.0306 0.148
-0.574 0.0345 0.193
0.226 0.200
0.326 0.178
0.526 0.155
0.626 0.162

Mean 0.019 0.173
Standard deviation 0.015 0.018

VI. THEORETICAL MODEL FOR
ENERGY-DEPENDENT TUNNELING EFFECTS

In this section, we investigate processes related to
LET in the reverse bias regime, and we analyze energy-
dependent tunneling and its impact on the transport. We
focus specifically on the lower two triangles of Fig. 3(b).
In this case, one valence electron is always present in
the left dot, while a second valence electron transits the
double dot from the left to the right, in the charging se-
quence (1, 0) → (2, 0) → (1, 1) → (1, 0). Note that a
downhill energy path between the left and right dots cor-
responds to a positive value of the detuning parameter,
ε ≡ (E1 − E2) > 0, where E1 and E2 are the chemical
potentials of the left dot (dot 1) and the right dot (dot
2), respectively.

A. Qualitative Discussion

In Ref. 32, a sequential tunneling model was used to
analyze the reverse bias transport currents. In the se-
quential tunneling approximation, the current through
a particular transport channel can be expressed as
(I/e)−1 = Γ−1L + Γ−112 + Γ−1R , where the L index refers
to the L → 1 tunnel process, the R index refers to the
2 → R process, and the 12 index refers to tunneling be-
tween dots 1 and 2. As in previous sections, L and R
refer to the left and right leads. In Ref. 32, two trans-
port channels were studied: the singlet channel (S) and
the triplet channel (T).

The sequential tunneling model provides a great deal of
information. For example, it explains why the lower por-
tions of the data in Fig. 2(c) and (g) take the distinctive
form of two parallel lines, rather than a triangle: the two
lines correspond to distinct transport processes through
the singlet and triplet channels. For either channel, the
current is effectively determined by the bottleneck pro-
cess, which turns out to be ΓL or Γ12. Since the function
ΓL depends sensitively on the chemical potential of dot 1,
due to energy dependent tunneling, we observe that I is
exponentially suppressed when E1 < ELF , reducing the
bias ‘triangle’ to a narrow line. Thus, the lower current
feature in Fig. 3(b) actually consists of two overlapping
triangles (a singlet triangle and a triplet triangle), each
of which is reduced to a narrow line due to energy de-
pendent tunneling.

Despite its success, the sequential tunneling model is
over-simplified and cannot explain certain crucial fea-
tures of the transport current. For example, the strong
enhancements of the transport current at the points
marked Q and U in Fig. 3(b) are resonances arising from
the coherent delocalization of electrons in dots 1 and 2.
Such effects cannot be explained by an incoherent tun-
neling model. The master equation approach of Nazarov
and Stoof does incorporate resonant effects.34,35 How-
ever, it does not account for the inelastic, sequential tun-
neling processes that dominate the transport through-
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out most of the current map. We use a master equation
technique that incorporates both resonant and inelastic
tunneling effects to address this situation.

B. Quantitative Analysis

The theoretical model that we use for the quantitative
analysis is presented in detail in Appendix C. This model

treats the S and T transport channels independently, and
treats the coupling to the environment within the Lind-
blad formalism.49,50 The analysis yields an expression for
the current I through a single channel in the two-electron
dot:

I = eΓLΓR

{
4t2(fL − fR)[ΓL(1− fL) + ΓR(1− fR) + Γi]

+Γi

(
4(ε/~)2 + [ΓL(1− fL) + ΓR(1− fR) + Γi]

2
)

[fL(1− fR)θ − fR(1− fL)θ̄]
}{[

4(ε/~)2 + [ΓL(1− fL) + ΓR(1− fR) + Γi]
2
]

[ΓLΓR(1− fLfR) + ΓiΓR(θ + fRθ̄) + ΓiΓL(θ̄ + fLθ)]
+4t2[ΓL(1− fL) + ΓR(1− fR) + Γi][ΓL(1 + fL) + ΓR(1 + fR)]

} .

(6)

Here, t is the (elastic) tunnel coupling between the two
dots, ε is the energy difference between the (2,0) charge
configuration and the (1,1) charge configuration, fL and
fR are the Fermi functions for the two leads L and R
(they of course depend on energy, but this dependence is
suppressed in the notation for brevity), ΓL is the tunnel
coupling between the left lead L and dot 1, ΓR is the
tunnel coupling between the right lead R and dot 2, Γi

is the inelastic interdot coupling, and θ and θ̄, which
account for the fact that phonon emission is much more
likely than phonon absorption at low temperatures, are
taken here to be Heaviside step functions: θ = Θ(ε) and
θ̄ = Θ(−ε), with Θ(ε) = 0 when ε < 0, Θ(ε) = 1/2
when ε = 0, and Θ(ε) = 1 when ε > 0. The inelastic
interdot tunnel coupling Γi is a weak, even function of
ε. Below, we show that our data are consistent with
Γi = (constant) throughout most of the bias triangle.
When the singlet and triplet channels are fully decoupled,
as we assume here, the total current is expressed as a sum
of terms like Eq. (6), one for each channel. For the case of
triplet states that are triply degenerate, the total triplet
current is therefore the sum of three terms, one for each
state.

VII. ANALYSIS OF DATA YIELDING
INFORMATION ABOUT ENERGY-DEPENDENT

TUNNELING

In this section, we first perform a fitting analysis using
Eq. (6) to obtain estimates for the various tunneling pa-
rameters, including the energy dependent tunneling. We
then go on to discuss the prominent features in the cur-
rent map. We finish up by checking the self-consistency
of our LET assumption of decoupling between the single
and triplet channels, and we discuss the implications for
preferential loading of the excited states.
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FIG. 5: Fits to data cuts. (a) Black curve: a cut through the
data obtained along the line segment QVO, as indicated in
the inset. Red curve: a fit to the 1D data cut, using the theo-
retical formula in Eq. (11). (b) Black curve: a cut through the
data along the line segment RWQ, as indicated in the inset.
Red curve: a cut through the theoretical fit to the 2D data
set, evaluated along the same line. The data were fit using
the full theoretical model of Eq. (6).
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A. Fitting analysis of the tunnel parameters

We begin with an investigation of the various tunnel
rates in the LET regime. The transport data of Fig. 2(g)
will be analyzed along particular cuts. We first consider
the cut QVO, which is along the base of the singlet tri-
angle, as shown in Fig. 5(a). We also consider the data
cut RWQ, which is along the high slope of the singlet
triangle, as shown in Fig. 5(b). Along the latter cut,
the data exhibit two prominent features: a Lorentzian
peak, which is characteristic of resonant tunneling, and
a relatively flat region to the left of the peak, which is
characteristic of inelastic tunneling.36

We first analyze the singlet inelastic transport current,
which dominates the current flow over most of the singlet
bias triangle, except near the line QV. As we shall see,
the tunnel coupling t has a characteristic magnitude of
µeV, while the length of the bias triangle is on the order
of hundreds of µeV, in energy units. Thus, away from
line segment QV, the condition ε � ~t is true almost
everywhere. Equation (6) then reduces to the expected
form for sequential tunneling

I/e ' fL(1− fR)
[
Γ−1L + Γ−1R + Γ−1i

]−1
, (7)

where the tunneling between dots 1 and 2 is strictly in-
elastic.

To make further progress, it is useful to introduce a
specific model for the tunneling rates between the dots
and the leads. For simplicity, we consider square tunnel
barriers, for which the leading order energy dependence
of the tunnel rate is exponential and is given by23

Γ(E) = Γ0e
−2W
√

2m∗(U−E)/~2
. (8)

Here, W is the barrier width, U is its height, and E is
the energy of the tunneling electron. Since our transport
data do not exhibit enough structure to independently
determine the parameters characterizing the tunnel bar-
riers, we consider an alternative tunneling function by
linearizing the argument of the exponential in Eq. (8)
about one of the lead Fermi levels (see Refs. 21 and
22). For the tunneling function between the left lead
and dot 1, we perform our expansion around the Fermi
energy of the left lead, obtaining

ΓL(E1) ' ΓL0e
(E1−ELF )/EL0 , (9)

with the characteristic energy defined as EL0 = [(UL −
ELF )~2/2m∗W 2

L]1/2. An analogous linearization can also
be performed for the right lead.

We first consider the singlet triangle. We can make
a rough comparison of the magnitudes of the different
tunnel rates in Eq. (7), based on general observations of
the data in Fig. 5. We first consider the flat region near
point W in panel (b). To the left of this region, the bias
triangle closes, due to the action of the Fermi functions.
To the right, we observe the resonant peak at point Q.
Along the line segment RQ, the chemical potential of

the left dot is constant, so ΓL must be constant, but ΓR

need not be. Since the data are almost flat, ΓR must not
determine the shape of the current flow. For data cuts
parallel to line segment QVO, the detuning parameter ε is
a constant, so Γi must be almost constant. However, the
current has a strong energy dependence, which cannot be
due to Γi. Together, these facts suggest that the energy
dependence of ΓL controls the shape of the current in
the inelastic tunneling regime, although not necessarily
its magnitude. We conclude that the functions ΓR and
Γi must either be much larger than ΓL or constants in
the inelastic tunneling regime.

We now perform a more quantitative analysis by con-
sidering the line QV, defined by the resonant condition
ε = 0. Because of the resonance, terms involving t must
be dominant in Eq. (6). Away from the long edges of the
triangle, Eq. (6) then reduces to

I/e ' (Γ−1L + 2Γ−1R )−1. (10)

As expected, we find that the inelastic tunneling contri-
bution, Γi, is irrelevant in the resonant regime. This fact
makes it possible to independently determine the param-
eters ΓR and Γi. By comparing Eqs. (7) and (10) and
noting that the current in Fig. 5(b) is much larger at
point Q than point W, we conclude that Γi � ΓR in
the inelastic tunneling regime. This fact is not affected
by the resonance condition. Since ΓL corresponds to the
bottleneck process in the resonant tunneling regime, we
find that ΓL,Γi � ΓR. Equation (6) then reduces to

I/e ' ΓL(fL − fR). (11)

We can fit Eq. (11) to the data cut along QV, as shown
in Fig. 5(a). This gives a direct estimate for the temper-
ature and the energy dependent tunneling parameters in
the linearized function ΓL. We can obtain the remaining
singlet tunneling parameters by performing a 2D fit of
the data to the full expression in Eq. (6). This provides
estimates for the parameters Γi, ΓR and t, with results
shown in Table V. We note that since ΓR has been proven
to be irrelevant in our LET data, it was not possible to
discern any energy dependence in this parameter. Thus,
we have treated ΓR as a constant in our analysis. In
Fig. 5(b), we show one result from our 2D fitting proce-
dure, as evaluated along the line segment RWQ .

B. Prominent features in the data

It is instructive to consider limiting cases of Eq. (6)
that are relevant for our LET data, in order to gain a
better physical understanding. We specifically consider
the bright line of current adjacent to line segment RWQ.
As apparent from Fig. 4(e), the Fermi function for the left
lead is nearly saturated along this line, so that fL ' 1
and fR ' 0. In this regime, the transport current takes
the form

I

e
' ΓL [1 + ε2Γiθ/(~t)2ΓR]

[1 + ε2(ΓL + Γiθ)/(~t)2ΓR]
, (12)
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TABLE V: Fitting parameters and singlet-triplet energy
splittings for the Si/SiGe double quantum dot transport
model presented in Eq. (6) for the data in Fig. 2(g). The en-
ergy dependent tunneling parameters and the singlet-triplet
energy splittings are described in the text. Standard devia-
tions are given in square brackets.

Energy (µeV)

hΓL0S 0.62 [0.01]
EL0S 40 [2]
hΓiS 0.125 [0.003]
~tS 3.2 [1.2]
hΓRS 38 [28]

hΓL0T 0.48 [0.01]
EL0T 34 [3]
hΓiT 0.183 [0.003]
~tT 2.0 [0.1]
hΓRT 55 [8]

Temperature 145 [7] mK

EST , (2,0) state 174 [38]
EST , (1,1) state 4 [1]

corresponding to a Lorentzian line-shape centered on the
resonant condition ε = 0. The half-width of the peak
is given by ε21/2 ' (~t)2ΓRp/ΓLp, where ΓLp and ΓRp

correspond to barrier tunnel rates, evaluated at the peak
value of the current. Along the line from Q to R, the
functions ΓL and t remain approximately constant. To
the left of the peak, the data are nearly flat, as shown in
Fig. 5(b), with asymptotic behaviors determined by the
bottleneck rate Γi. (Note from Table V that ΓiS . ΓLS

along line segment RWQ.) We conclude that ΓiS is nearly
constant as a function of ε. The dips in the data between
R and W are due to drifts in the measurement. The
suppression of the current to the left of R is probably
caused by energy dependent variations of Γi, which are
not included in our model. It is interesting to note that
the general shape of the curve described in Eq. (12) is
relatively insensitive to changes in ΓR. This is consistent
with the fact that tunneling from dot 2 to the right lead
is the fastest of the tunnel rates, and it is therefore never
a bottleneck.

To the right of the resonant peak in Fig. 5(b), the
following conditions are satisfied: θ = 0 and −ε� ~t, so
Eq. (12) is is no longer valid. The current in this region is
more strongly suppressed than the linearized theory we
discuss here predicts.

Using the fitting parameters reported in Table V,
Eq. (6) can be used to reconstruct the singlet and triplet
bias triangles corresponding to the electron transport
data shown in Figs. 2(g) and 6(a). The resulting the-
oretical fits are presented in Fig. 6(b). The fits are quite
satisfactory, and they provide strong support for the dou-
ble dot theory described above.
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FIG. 6: Comparison of the experimental data with calcula-
tions based on the fitting parameters of Table V, obtained for
the same range of gate voltages. (a) Current transport data,
identical to Fig. 2g, with an overlay of the edges of the singlet
and triplet lower bias triangles. (b) Theoretical reconstruc-
tion of the lower bias triangles, based on Eq. (6). (c) The
computed singlet occupation density, ρS = ρ1S + ρ2S , shows
that the singlet occuption falls off in the vicinity of the triplet
triangle, as required for the observation of LET.

C. Self-consistency check

In Sec. VI, we noted that the singlet and triplet
transport channels should approximately decouple, if our
theory is valid. As a self-consistency test, we should
check whether this statement is consistent with the tun-
neling parameters obtained from the fitting procedure.
Specifically, we want to show that the singlet density,
ρS = ρS1 + ρS2, is small wherever the triplet density,
ρT = ρT1 + ρT2, is appreciable, and vice versa.
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The formalism developed in Appendix C and Sec. VI
allows us to compute the steady-state occupations for
dots 1 and 2, as a function of the tunneling coefficients.

For either the singlet or the triplet triangles, the formal-
ism of Sec. VI leads to

ρ1 + ρ2 =

{
[4(ε/~)2 + [ΓL(1− fL) + ΓR(1− fR) + Γi]

2][ΓLΓR(fL + fR − 2fLfR) + Γi(ΓRfR + ΓLfL)]
+8t2[ΓL(1− fL) + ΓR(1− fR) + Γi][fLΓL + fRΓR]

}{[
4(ε/~)2 + [ΓL(1− fL) + ΓR(1− fR) + Γi]

2
]

[ΓLΓR(1− fLfR) + ΓiΓR(θ + fRθ̄) + ΓiΓL(θ̄ + fLθ)]
+4t2[ΓL(1− fL) + ΓR(1− fR) + Γi][ΓL(1 + fL) + ΓR(1 + fR)]

} .

(13)

In Fig. 6(c), we plot ρS = ρ1S + ρ2S using the fitting
parameters from Table V. We conclude that the singlet
density does indeed vanish inside the triplet triangle, in
the portions of the triangle where current flow is appre-
ciable. Below the singlet and triplet triangles, in the
lower-right portion of Fig. 6(c), the theoretical model in-
dicates an anomalous region of singlet occupation. Such
behavior is spurious, and it is a consequence of using en-
ergy dependent tunneling models outside their range of
validity.

D. Triplet relaxation and loading of excited states

We first address the question of triplet-to-singlet re-
laxation. In many experimental situations, the current
is blockaded outside the singlet triangle.20,51 We have
shown that in the LET regime, the triplet channel is not
necessarily blockaded. However when the triplet loading
is favored, if a (2,0) triplet decays to a (2,0) singlet faster
than the singlet can unload, then current through the
triplet triangle will be effectively blockaded. We have also
shown that the condition for this blockade to be lifted is
that the total singlet loading rate, including loading via
triplet decay, should be of the same order or smaller than
the singlet unloading rate.32 The observation of current
flow in the triplet tail indicates that these conditions are
met in our sample.

In this paper, we did not explicitly consider the triplet-
to-singlet decay channel. However, the decay ‘current’
must be bounded by the total loading current for the
singlet. As reported in Ref. 32, we can fit the resonance
in Fig. 5(a) close to the peak, to avoid spurious struc-
ture possibly related to cotunneling. In this way, we
obtain a bound on the triplet-singlet decay rate, given
by ΓTS < 1.45 × 106 s−1. This bound differs from that
published previously, because it depends exponentially
on the singlet-triplet splitting and the gate voltage-to-
energy calibration, both of which have been determined
to a greater accuracy in this paper. The actual value
of ΓTS is expected to be much smaller than this current
estimate or that published previously in Ref. 32.

Finally, we can investigate selective tunneling into the
triplet and singlet states. We have shown that there is

a very strong energy dependence for tunneling into the
double dot. Tunneling into a singlet state proceeds at
a very different rate than tunneling into a triplet, even
when they are at the same energy. However, our analysis
shows that the (2,0) triplet state is split off from the (2,0)
singlet by a large amount: EST = 173µeV. Electrons
tunneling into these two states therefore experience very
different barriers. Based on our analysis of the transport
data, we can estimate this difference by comparing the
ratio of the singlet vs. triplet loading rates, as

ΓS,load

ΓT,load
=

fL(E1)ΓLS(E1)

fL(E1 + EST )ΓLT (E1 + EST )
. (14)

When the triplet lies above the Fermi level of the left
lead, there will be a very strong suppression of the triplet
loading. On the other hand, when both the singlet and
triplet lie below the Fermi level, we observe a very strong
enhancement of the triplet, as compared to the singlet.
For the tunneling parameters extracted above, this en-
hancement factor is on the of order 100. However, this
is actually an under-estimate, owing to our use of lin-
earized tunnel functions. Comparison of Figs. 6(a) and
6(b) shows that, in regions with low current flow, the ex-
perimental transport current is more strongly suppressed
than the theoretical prediction. In general, the suppres-
sion of singlet tunneling in this regime should be en-
hanced for materials like silicon, which have relatively
large effective masses. For example, by using linearized
tunneling functions and setting the Fermi functions to 1
in Eq. (14), we obtain

ΓLS(E1)

ΓLT (E1 + EST )
∝ exp

[
EST

√
2m∗W 2/(U − ELF )

]
.

(15)
Here, we see that the effective mass appears inside the
exponential.

VIII. DISCUSSION

In this paper we performed a detailed analysis of eight
sets of data measuring current through a double quan-
tum dot. A striking feature of the data in reverse bias is
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FIG. 7: Description of the spin exchange processes between a
dot and a lead at points B and J in Fig. 3(a). (a) Transport
data at source-drain bias of VSD = 0.526 mV. (b) A blow-up
of the data inside the green box in panel (a). The color scale
is expanded to show the current at points B and J, which
are important for determining the base slope, as discussed in
Sec. IV B. (c) Configuration in which the T1,1 state is spin
blockaded, in the three electron or ‘hole triangle’ regime. (d)
An electron can tunnel into the left dot from the left lead,
forming a singlet-like (2,1) state. (e) The singlet-like (2,1)
state can emit an electron to the left lead, leaving the system
in the S1,1 state, and lifting spin blockade. (f) In the ‘electron
triangle’ regime with two electrons, loading of the T1,1 state
from the right lead results in spin blockade. (g) The electron
in the right dot can tunnel back to the right lead, allowing
the right dot to be reloaded into the S1,1 state. (h) When the
S1,1 state is loaded from the right lead, transport can resume
through the double dot.

the presence of a strong tail of current that extends out-
side the boundaries of the usual bias triangle and that
we attribute to lifetime-enhanced transport (LET). The
data also contain features that are difficult to explain us-
ing the conventional double dot transport theory, which
assumes a single bias triangle. Yet, they are explained
quite naturally when the data are fit to a pair of bias tri-
angles, corresponding to distinct singlet and the triplet
channels, as presented in columns 2 and 4 of Fig. 2. In
Fig. 2(b), the region with strong current is broader on
the electron-triangle side than on the hole-triangle side.
The region with strong current on the electron-triangle
side lies largely within the triplet triangle shown in red.
It is clear throughout that tunneling through the T1,1

→ T2,0 channel is very strong in the reverse bias (LET)
direction, and this resonance appears to show up in the
forward bias (spin blockade) direction as well.

It is worth noting that the tunnel rate between the two
dots in this experiment was quite high. This rate was not
easily tuned, because the device was not specifically de-
signed with a gate for this purpose. However, this is not
a limiting factor for future experiments. In other recent
work, a double dot in Si/SiGe was specifically designed
with tunable couplings, and the corresponding tunnel
rates were found to be highly tunable.52 As described in
Sec. III, the electron occupation of our double dot could
not be absolutely determined here. However, recently,
a double dot with a known one-electron occupation has
been demonstrated in a different Si/SiGe experiment.41

The ability to control energy dependent tunneling is an
important tool for measuring spin qubits.16 Here, we ob-
serve energy dependent tunneling so strong that in many
cases it deforms a bias triangle into a thin line. Our fit-
ting analysis indicates that the tunnel rates to the leads
can change by a factor of 1/e when the dot chemical po-
tential is varied by as little as 30-40 µeV.

The consistency of the analysis of all the data sets pro-
vides strong evidence that lifetime-enhanced transport
occurs in a Si/SiGe double dot. The demonstration that
quantum dots can be fabricated in Si/SiGe heterostruc-
tures that exhibit high-quality spin blockade as well as a
new transport channel that only occurs when spin relax-
ation times are long is evidence that this materials system
has promise for the manufacture of devices requiring spin
coherence.
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Appendix A: Spin exchange with the leads in the
spin blockade regime

In Sec. IV B, we described a method for determining
the base slope by fitting a line to the points labelled B
and J in Fig. 3. Fig. 7(b) is an expanded view of one of
the spin blockade data sets, showing that points B and
J are indeed clearly visible in the raw data. At these
points, and in fact along the entire segments BA and JI
in Fig. 3, spin exchange with the leads lifts spin blockade.
In this appendix we briefly discuss this spin exchange pro-
cess. Figs. 7(f)-(h) describe this spin exchange process
between the right dot and the right lead at point B, while
Figs. 7(c)-(e)describe the spin exchange process between
the left dot and the left lead at point J.

In the three electron regime at point J, the transport
cycle goes from (1,1) to (2,0) to (2,1) and back to (1,1).
At point J, transport is spin blockaded, because µT (1,1)

lies below µT (2,0). The set of chemical potentials la-
beled µd,S∗ , shown by the blue dashed and solid lines
in Figs. 7(c)-(e), refer to the energy involved in discharg-
ing the left dot from the ground, singlet-like (2,1) state
to the S1,1 and T1,1 states, respectively. At point J, when
the system is blockaded in the T1,1 state, an electron can
tunnel from the left lead to the left dot. This corresponds
to a tunneling event that is in the direction opposite to
the overall electron motion under the effect of the trans-
port bias VSD. Such a tunneling event can enable the
formation of a singlet-like (2,1) state from the T1,1 state,
because electrons with either spin orientation are avail-
able in the left lead. This transition occurs at an energy
given by the blue µd,S∗ level (solid line). The left dot is
allowed to discharge from any one of the two µd,S∗ lev-
els. If it discharges from the higher of the two chemical
potentials, the system relaxes to the singlet (1,1) state.
The two µd,S∗ levels are separated by the singlet-triplet
splitting of the (1,1) state and are therefore very closely
spaced.

Appendix B: The chemical potentials of the electron
and hole triangles

Figure 8 shows the chemical potentials corresponding
to the full set of labelled points in Fig. 3.

Appendix C: Theoretical model for quantitative
energy-dependent tunneling effects

In this appendix we present our theoretical treatment
of energy-dependent tunneling effects that uses the Lind-
blad formalism to account for both resonant and incoher-
ent processes.

In our calculations, we treat the S and T transport
channels independently. Our reference state has one fixed
electron in dot 1, and we consider transport that involves

just three different states: |0〉, |1〉, and |2〉. Here, |0〉
refers to the state with no additional electrons, |1〉 refers
to the state with one additional electron on dot 1 [the
(2,0) charge configuration], and |2〉 refers to the state
with one additional electron on dot 2 [the (1,1) charge
configuration]. Coherent evolution is controlled by the
Hamiltonian

H =
1

2
ε(|1〉〈1| − |2〉〈2|) + ~t(|1〉〈2|+ |2〉〈1|), (C1)

where t is the tunnel coupling between the two dots.
We now couple this system to the environment, using

the Lindblad formalism.49,50 Tunneling from the left lead
to dot 1 is described by the Lindblad operator

LL1 =
√
fL(E1)ΓL(E1) |1〉〈0|, (C2)

where fL(E1) = f(E1 − ELF ) is the Fermi function of
the left lead, and ΓL is the tunnel coupling between the
lead L and dot 1. Both fL and ΓL depend on energy,
but, for brevity, we will suppress the energy dependence
in the notation. The other relevant Lindblad operators
are given by

L1L =
√

(1− fL)ΓL |0〉〈1|, (C3)

L2R =
√

(1− fR)ΓR |0〉〈2|, (C4)

LR2 =
√
fRΓR |2〉〈0|, (C5)

L12 =
√
θΓi |2〉〈1|, (C6)

L21 =
√
θ̄Γi |1〉〈2|. (C7)

Note that reverse processes (from right to left), such as
L1L, are also included here. The latter play a role along
the edges of the bias triangle. For example, an electron
may enter dot 1 from lead L and then exit back to lead
L. Such processes do not directly affect the steady-state
current, but they do affect the current indirectly, because,
while the dot is occupied, it cannot be occupied by a
second, right-moving electron.

In Eqs. (C6) and (C7), the incoherent tunneling be-
tween the two dots involves phonon emission or absorp-
tion processes. We have accounted for these phonon ef-
fects through the θ-functions. At high temperatures, the
θ-functions may possess considerable structure. How-
ever for low temperature applications, we assume that
θ = Θ(ε) and θ̄ = Θ(−ε), where the step function Θ(ε)
takes the values 0, when ε < 0, 1/2 when ε = 0, and
1 when ε > 0. More general forms for θ can be substi-
tuted, as appropriate. We also note that the inelastic,
interdot tunnel coupling Γi is a weak, even function of
ε. Below, we show that our data are consistent with
Γi = (constant) throughout most of the bias triangle.

The evolution of the density operator is described by
the rate equation

˙̂ρ = − i
~

[H, ρ̂] +
∑
j

[
Lj ρ̂

†
j −

1

2

{
ρ̂, L†jLj

}]
, (C8)
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FIG. 8: Chemical potentials corresponding the the labelled points in Fig. 3. (a) Chemical potentials corresponding to the two-
electron regime for reverse bias, which shows LET. (b) The two-electron regime for forward bias, which shows spin-blockade.
(c) The three-electron or ‘hole’ regime for reverse bias (LET). (d) The three-electron or ‘hole’ regime for forward bias (spin
blockade).
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where ρ̂ is the density matrix. In general, ρ̂ must sat-
isfy the normalization condition 1 = ρ0 +

∑
k(ρ1k + ρ2k),

where the diagonal terms ρ0, ρ1k, and ρ2k describe the
probability of being in a given occupation state, and the
sum over k includes the singlet and three triplet chan-
nels. In the absence of any decay processes between the
triplet and singlet states, this normalization condition is
the only coupling between the singlet and triplet sectors,
since it ensures that a triplet cannot be formed when a
singlet state is occupied, and vice versa. However, in
the LET regime, we have shown that the (2, 0) singlet
state unloads much faster than it loads, and that the un-
loading of the (1,1) singlet is similarly fast (or faster).32

These conditions are equivalent to the statement that
ρ1S + ρ2S � 1 wherever ρ1T + ρ2T is appreciable, and
vice versa. Since LET behavior is observed in our sam-
ples, we make a singlet-triplet decoupling approximation,
such that the normalization

1 ' ρ0 + ρ1 + ρ2, (C9)

applies to both the singlet and triplet channels. The
resulting rate equations are correspondingly simplified.

Since there is no coherent coupling between state |0〉
and states |1〉 and |2〉, the density operator for a single

channel can be defined as

ρ̂ = ρ0|0〉〈0|+ ρ1|1〉〈1|+ ρ2|2〉〈2|+ ρ12|1〉〈2|+ ρ21|2〉〈1|.
(C10)

We may then use Eq. (C9) to eliminate ρ0 from the rate
equations defined in Eq. (C8). Steady-state solutions are

obtained by requiring that ˙̂ρ = 0.

The current operator is defined as

Î/e = it(|1〉〈2| − |2〉〈1|) + Γi(θ|1〉〈1| − θ̄|2〉〈2|), (C11)

and it involves both coherent and incoherent components.
The steady-state current is given by I = Tr(ρÎ). Us-
ing the steady-state rate equations, the result can be ex-
pressed in terms of density coefficients:

I/e = (1− fR)ΓRρ2 − fRΓRρ0. (C12)

In this form, the current is simply expressed as the net
tunneling rate between dot 2 and lead R.

By solving for the density coefficients, Eq. (C12) can be
expressed entirely in terms of tunneling rates and Fermi
functions, yielding the following result for single-channel
transport in a two-electron double dot:

I

e
= ΓLΓR

{
4t2(fL − fR)[ΓL(1− fL) + ΓR(1− fR) + Γi]

+Γi

(
4(ε/~)2 + [ΓL(1− fL) + ΓR(1− fR) + Γi]

2
)

[fL(1− fR)θ − fR(1− fL)θ̄]
}{[

4(ε/~)2 + [ΓL(1− fL) + ΓR(1− fR) + Γi]
2
]

[ΓLΓR(1− fLfR) + ΓiΓR(θ + fRθ̄) + ΓiΓL(θ̄ + fLθ)]
+4t2[ΓL(1− fL) + ΓR(1− fR) + Γi][ΓL(1 + fL) + ΓR(1 + fR)]

} .

(C13)

When the singlet and triplet channels are fully decoupled,
as we assume here, the total current is expressed as a sum
of terms like Eq. (C13), one for each channel.

As an initial check on our result, we consider a known
limit. For the case of pure coherent tunneling between

dots 1 and 2, we take the limit Γi → 0. In the interior
of the bias triangle where fL ' 1 and fR ' 0, Eq. (C13)
immediately reproduces the resonant tunneling results
obtained in Refs. 34 and 35.
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