1,301 research outputs found

    Harnessing optical micro-combs for microwave photonics

    Full text link
    In the past decade, optical frequency combs generated by high-Q micro-resonators, or micro-combs, which feature compact device footprints, high energy efficiency, and high-repetition-rates in broad optical bandwidths, have led to a revolution in a wide range of fields including metrology, mode-locked lasers, telecommunications, RF photonics, spectroscopy, sensing, and quantum optics. Among these, an application that has attracted great interest is the use of micro-combs for RF photonics, where they offer enhanced functionalities as well as reduced size and power consumption over other approaches. This article reviews the recent advances in this emerging field. We provide an overview of the main achievements that have been obtained to date, and highlight the strong potential of micro-combs for RF photonics applications. We also discuss some of the open challenges and limitations that need to be met for practical applications.Comment: 32 Pages, 13 Figures, 172 Reference

    Application of China-Brazil Earth resources satellite in China

    Get PDF
    The launch and successful operation of Chinese Brazil Earth resources satellite (CBERS-1) in China has accelerated the application of space technology in China. These applications include agriculture, forestry, water conservation. land resources, city planning, environment protection and natural hazards monitoring and so oil. The result of these applications provides a scientific basis for government decision making and has created great economic and social benefits in Chinese national economy construction. In this paper we present examples and provide auxiliary documentation of additional applications of the data from Earth resource monitoring, (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved

    Microcalorimetric study on the toxic effect of Pb2+ to Tetrahymena

    Get PDF
    The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P (m)) and the growth rate constant (k) were determined, which showed that values of P (m) and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P (m)) and the growth rate constant (k) were determined, which showed that values of P (m) and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+

    Physiological acclimation strategies of riparian plants to environment change in the delta of the Tarim River, China

    Get PDF
    The occurrence and development of riparian forests, which were mainly dominated by mesophytes species related closely with surface water. Since there was no water discharged to the lower reaches of Tarim River in the past three decade years, the riparian forests degrade severely. The groundwater table, the saline content of the groundwater, as well as the content of free proline, soluble sugars, plant endogenous hormones (abscisic acid (ABA), and cytokinins (CTK)) of the leaves and relative rates of sap flow of the Populus euphratica Oliv. (arbor species), Tamarix ramosissima Ldb. (bush species), and Apocynum venetum L. (herb species) were monitored and analyzed at the lower reaches of the Tarim River in the study area where five positions on a transect were fixed at 100 m intervals along a sampling direction from riverbank to the sand dunes before and after water release. The physiological responses and acclimation strategies of three species to variations in water and salinity stress were discussed. It was found that A. venetum population recovered to groundwater table ranging from -1.73 to -3.56 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L; P. euphratica appeared to be more sensitive to the elevation of groundwater table than the A. venetum and T. ramosissima at groundwater table ranging from -5.08 to -5.80 m, and when exposed to saline content of the groundwater ranging from 42.17 to 49.55 m mol/L. T. ramosissima tended to be the best candidate species for reclamation in this hyper-arid area because it responded to groundwater table ranging from -1.73 to -7.05 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L. These results explained the distribution patterns of desert vegetation in the lower reaches of the Tarim River. Understanding the relationships among ecological factors variables, physiological response and acclimation strategies of plant individuals could provide guidance to sustainable management, reclamation and development of this and similar regions

    Achiral phenolic N-oxides as additives: an alternative strategy for asymmetric cyanosilylation of ketones

    Get PDF
    The activation of chiral titanium(IV) complexes with additives, phenolic N-oxides, is found to provide an alternative strategy for asymmetric cyanosilylation of ketones in excellent yield With LIP to 82%, ee. (C) 2004 Elsevier Ltd. All rights reserved

    Refractive Index of Humid Air in the Infrared: Model Fits

    Get PDF
    The theory of summation of electromagnetic line transitions is used to tabulate the Taylor expansion of the refractive index of humid air over the basic independent parameters (temperature, pressure, humidity, wavelength) in five separate infrared regions from the H to the Q band at a fixed percentage of Carbon Dioxide. These are least-squares fits to raw, highly resolved spectra for a set of temperatures from 10 to 25 C, a set of pressures from 500 to 1023 hPa, and a set of relative humidities from 5 to 60%. These choices reflect the prospective application to characterize ambient air at mountain altitudes of astronomical telescopes.Comment: Corrected exponents of c0ref, c1ref and c1p in Table

    Real-time counting of single electron tunneling through a T-shaped double quantum dot system

    Full text link
    Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.Comment: 8 pages, 5 figure

    Template-Free Synthesis and Enhanced Photocatalytic Performance of Uniform BiOCl Flower-Like Microspheres

    Get PDF
    Preparation of uniform BiOCl flower-like microspheres was facilely accomplished through a simple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCl nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCl samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (center dot O-2(-)) played critical roles

    A new method for grain refinement in magnesium alloy: High speed extrusion machining

    Get PDF
    Magnesium alloys have received broad attentions in industry due to their competitive strength to density ratio, but the poor ductility and strength limit their wide range of applications as engineering materials. A novel severe plastic deformation (SPD) technique of high speed extrusion machining (HSEM) was used here. This method could improve the aforementioned disadvantages of magnesium alloys by one single processing step. In this work, systematic HSEM experiments with different chip thickness ratios were conducted for magnesium alloy AZ31B. The microstructure of the chips reveals that HSEM is an effective SPD method for attaining magnesium alloys with different grain sizes and textures. The magnesium alloy with bimodal grain size distribution has increased mechanical properties than initial sample. The electron backscatter diffraction (EBSD) analysis shows that the dynamic recrystallization (DRX) affects the grain refinement and resulting hardness in AZ31B. Based on the experimental observations, a new theoretical model is put forward to describe the effect of DRX on materials during HSEM. Compared with the experimental measurements, the theoretical model is effective to predict the mechanical property of materials after HSEM. (c) 2015 Elsevier B.V. All rights reserved

    Water isotope technology application for sustainable eco-environmental construction: Effects of landscape characteristics on water yield in the alpine headwater catchments of Tibetan Plateau for sustainable eco-environmental construction

    Get PDF
    Topography-climate-vegetation-runoff relationships are important issues in hydrological studies. In this paper, based on analyzing water isotope characteristics of river water, the influence of these variables on the relative contribution of rain to river water was investigated during one rain event in the Heishui Valley of the upper Yangtze River in China. During one rain event on August 19, 2005, a total number of 182 river water samples were collected at 13 sampling sites located along the principal river course and its tributaries. The analysis of water isotopes in the principal river course and its tributaries showed that new rain water and secondary evaporation precipitation caused great variation in values of delta D and high d-excess increased with altitude. Based on calculations of two-component hydrograph separation using delta O-18, the results showed that the biggest relative contribution of new rain to river water (43%) was found in tributary B, while the smallest contribution (less than 5%) was found in tributary I. According to stepwise linear regression analysis, topography (elevation and slope) was the most important factor affecting the contributions of new rain to river water. When only vegetation variables were considered in the regression model, alpine shrub coverage proved to be negatively correlated with the contributions of new rain to river water, while alpine meadow coverage was positively correlated with the contributions of new rain. This would imply that increasing the relative coverage of alpine shrubs in this mountainous region of China may decrease the risk of flooding. (C) 2014 Elsevier B.V. All rights reserved
    corecore