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Abstract—The activation of chiral titanium(IV) complexes with additives, phenolic N-oxides, is found to provide an alternative
strategy for asymmetric cyanosilylation of ketones in excellent yield with up to 82% ee.
� 2004 Elsevier Ltd. All rights reserved.
Recent years, there are a number of important obser-
vations made in regarding the effect of additives on
asymmetric catalytic reactions.1 The addition of suitable
achiral additives and cocatalysts to support the asym-
metric catalyst system, enhance the yield and surpris-
ingly, in many cases also enhance the enantioselectivity
efficiently.2 Currently, asymmetric cyanosilylation of
ketones is intensively studied due to the importance of
cyanohydrins as the versatile synthons. Significant con-
tribution was made by Belokon,3 Shibasaki,4 Deng,5

Hoveyda and Snapper,6 the latter also developed this
reaction by employing MeOH and 3�A molecular sieves
as additives.

Furthermore, chiral N-oxides were extensively used in
asymmetric synthesis such as allylation of aldehydes,7

addition of Et2Zn to aldehydes,8 Strecker reaction,9

aldol reaction,10 and reduction of ketones.11 However,
there are only a few achiral N-oxides used as additives in
asymmetric reactions.12

Recently, our group has reported the asymmetric
cyanosilylation of ketones in which N-oxides play a key
role for activation of TMSCN in the catalytic system.13

We improved this reaction with a catalytic double-acti-
vation method (CDAM), in which salen-Ti(IV) complex
acted as the Lewis acid and achiral N-oxide acted as the
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Lewis base to activate ketones and TMSCN, respec-
tively.13e

We herein wish to describe our alternative strategy for
the asymmetric cyanosilylation of ketones based on a
chiral salen-Ti(OiPr)4 catalyst in combination with a
suitable achiral N-oxide as an additive (Scheme 1).

Our studies started with acetophenone as a model sub-
strate. In a preliminary study, we found ligand 1a has
the highest capability of asymmetric induction among
1a–f (Fig. 1). Further searching for the suitable N-oxide
additive (Fig. 1) revealed that the phenolic N-oxide 2a is
most promising in this catalytic system (Table 1, entries
5, 7–11). We also found that several parameters were
important for both the reactivity and enantioselectivity.
The best results were obtained when the molar ratio of
N-oxide 2a to acetophenone was 1% (Table 1, entries 1–
4). The yield and enantioselectivity were also dependent
on the temperature. The optimal temperature is )20 �C,
increasing or further decreasing the reaction tempera-
ture leads to a reduction in enantioselectivity (Table 1,
entries 3, 5, and 6). A study on the solvent effect showed
that dichloromethane provided the best overall results.
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Scheme 1. Asymmetric cyanosilylation of ketones.
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Figure 1. Screening of ligands and N-oxides.

Table 1. Asymmetric cyanosilylation of acetophenone catalyzed by

1a-Ti(OiPr)4 complex and additivesa

Entry Additive Amount

of addi-

tiveb (%)

Temp

(�C)
Yieldc

(%)

Eed (%)

1 2a 10 )20 94 70

2 2a 5 )20 89 76

3 2a 1 )20 94 81

4 2a 0.5 )20 83 80

5 2a 1 0 98 70

6 2a 1 )40 23 72

7 2b 1 0 73 68

8 2c 1 0 93 69

9 2d 1 0 88 69

10 2e 1 0 80 66

11 2f 1 0 73 60

aAll the reactions were carried out under the following conditions:

10mol% 1a-Ti(OiPr)4 complex, concentration of acetophenone¼
0.5M in CH2Cl2, 96 h.

b The molar ratio of additive to acetophenone.
c Isolated yield.
dDetermined by chiral GC analysis on Chirasil DEX CB.
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Encouraged by the result obtained for acetophenone, we
investigated a number of other ketones to probe their
behavior under the current catalytic condition.14 As
Table 2. Asymmetric cyanosilylation of ketones catalyzed by 1a-

Ti(OiPr)4 complex and N-oxide additive 2aa

Entry Ketone Yieldb (%) Eec (%)

1 Acetophenone 94 81

2 40-Methylacetophenone 68 71

3 40-Methoxyacetophenone 81 74

4 40-Chloroacetophenone 75 67

5 40-Fluoroacetophenone 89 73

6 30-Chloroacetophenone 93 82

7 a-Tetralone 73 77

8 1-Indanone 96 79

9 Benzylacetone 94 74d

10 trans-4-Phenyl-3-buten-2-one 77 52d

aAll the reactions were carried out under the optimized conditions:

10mol% 1a-Ti(OiPr)4, 1mol% 2a, )20 �C, concentration of

ketones¼ 0.5M in CH2Cl2, 96 h.
b Isolated yield.
cDetermined by chiral GC analysis on Chirasil DEX CB.
dDetermined by HPLC on Chiralcel OD.
shown in Table 2, observations accorded with those
afforded by CDAM.13e While the para-substituents
(methyl, methoxy, chloro or fluoro) on the aromatic ring
lead to lower enantioselectivities and yields than ace-
tophenone (Table 2, entries 1–5), the meta-chloro
substituted ketone gives similar enantioselectivity and
yield to acetophenone (Table 2, entry 6). a-Tetralone
and 1-indanone afford products with similar enantio-
selectivities (Table 2, entries 7 and 8). Different from
Snapper’s report,6 the a,b-saturated ketone gives a
higher ee value than the a,b-unsaturated one (Table 2,
entries 9 and 10). This is in agreement with Shibasaki’s
result.4a

In conclusion, by introducing phenolic N-oxides as
additives into the asymmetric cyanosilylation of
ketones, we achieved the comparable results that affor-
ded by CDAM. Moreover, the use of additives simpli-
fied the procedure and it is a method for the screening of
efficient catalyst systems. The precise function of the N-
oxide additive is not clear at present. To improve
enantioselectivity, modification of the N-oxides can be
rationally based and an investigation of the mechanism
is underway.
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