28 research outputs found
Acoustic module of the Acquabona (Italy) debris flow monitoring system
International audienceMonitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys)
Lateral Spread: From Rock to Soil Spreading
The main conceptual and terminological issues related to lateral spreading are presented and accompanied by a brief outline of the state-of-the-art on the topic. Then the geomorphic features related to the two main types of spreading (rock spreading and soil spreading) are illustrated, with reference to the geological conditions in which they take place, as well as to their causes and evolution. The role of monitoring and modelling is then considered as useful tools to better understand the mechanical behavior of unstable slopes affected by such processes. Finally, some considerations on the hazard and planning implications are provided
Field observations of a debris flow event in the Dolomites
A debris flow event occurred in June 1997 in the Dolomites (Eastern Alps, Italy). The phenomenon was directly observed in the field and recorded by a video camera near its initiation area. The debris flow originated shortly after an intense rainstorm (25 mm in 30 min) whose runoff mobilised the loose coarse debris that filled the bottom of the channel in its upper part. The analysis of the steep headwater basin indicates a very short concentration time (9-14 min) that fits the quick hydrological response observed in the field. The debris flow mobilisation was not contemporaneous with the arrival of the peak water discharge in the initiation area probably due to the time required for the saturation of the highly conductive channel-bed material. Channel cross-section measurements taken along the flow channel indicate debris flow peak velocity and discharge ranging from 3.1 to 9.0 m/s and from 23 to 71 m3/s, respectively. Samples collected immediately after deposition were used to determine the water content and bulk density of the material. Channel scouring, fines enrichment and transported volume increase testify erosion and entrainment of material along the flow channel. Field estimates of the rheological properties based on open channel flow of Bingham fluid indicate a yield strength of 5000 ± 400 Pa and relatively low viscosity (60-326 Pa s), probably due to a high percentage of fines (approx. 30%)
Field and laboratory study on some rheological properties of a debris flow
Proc. 3th Int. Conf., Davos, Switzerland Millpress, Rotterda
Development of a remotely controlled debris flow monitoring system in the Dolomites (Acquabona, Italy)
Direct measurements of the hydrological conditions for the occurrence of debris flows and of flow behaviour are of the outmost importance for developing effective flow prevention techniques. An automated and remotely controlled monitoring system was installed in Acquabona Creek in the Dolomites, Italian Eastern Alps, where debris flows occur every year. Its present configuration consists of three on-site stations, located in the debris-flow initiation area, in the lower channel and in the retention basin. The monitoring system is equipped with sensors for measuring rainfall, pore-water pressure in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore-pressure at the base of the flow. Three video cameras take motion pictures of the events at the initiation zone, in the lower channel and in the deposition area. Data from the on-site stations are radio-transmitted to an off-site station and stored in a host PC, from where they are telemetrically downloaded and used by the Padova University for the study of debris flows. The efficiency of the sensors and of the whole monitoring system has been verified by the analysis of data collected so far. Examples of these data are presented and briefly discussed. If implemented at the numerous debris-flow sites in the Dolomitic Region, the technology used, derived from the development of this system, will provide civil defence and warn residents of impending debris flows