55 research outputs found

    Validation and Recalibration of Two Multivariable Prognostic Models for Survival and Independence in Acute Stroke

    Get PDF
    Introduction Various prognostic models have been developed for acute stroke, including one based on age and five binary variables (‘six simple variables’ model; SSVMod) and one based on age plus scores on the National Institutes of Health Stroke Scale (NIHSSMod). The aims of this study were to externally validate and recalibrate these models, and to compare their predictive ability in relation to both survival and independence. Methods Data from a large clinical trial of oxygen therapy (n = 8003) were used to determine the discrimination and calibration of the models, using C-statistics, calibration plots, and Hosmer-Lemeshow statistics. Methods of recalibration in the large and logistic recalibration were used to update the models. Results For discrimination, both models functioned better for survival (C-statistics between .802 and .837) than for independence (C-statistics between .725 and .735). Both models showed slight shortcomings with regard to calibration, over-predicting survival and under-predicting independence; the NIHSSMod performed slightly better than the SSVMod. For the most part, there were only minor differences between ischaemic and haemorrhagic strokes. Logistic recalibration successfully updated the models for a clinical trial population. Conclusions Both prognostic models performed well overall in a clinical trial population. The choice between them is probably better based on clinical and practical considerations than on statistical considerations

    The maize root stem cell niche: a partnership between two sister cell populations

    Get PDF
    Using transcript profile analysis, we explored the nature of the stem cell niche in roots of maize (Zea mays). Toward assessing a role for specific genes in the establishment and maintenance of the niche, we perturbed the niche and simultaneously monitored the spatial expression patterns of genes hypothesized as essential. Our results allow us to quantify and localize gene activities to specific portions of the niche: to the quiescent center (QC) or the proximal meristem (PM), or to both. The data point to molecular, biochemical and physiological processes associated with the specification and maintenance of the niche, and include reduced expression of metabolism-, redox- and certain cell cycle-associated transcripts in the QC, enrichment of auxin-associated transcripts within the entire niche, controls for the state of differentiation of QC cells, a role for cytokinins specifically in the PM portion of the niche, processes (repair machinery) for maintaining DNA integrity and a role for gene silencing in niche stabilization. To provide additional support for the hypothesized roles of the above-mentioned and other transcripts in niche specification, we overexpressed, in Arabidopsis, homologs of representative genes (eight) identified as highly enriched or reduced in the maize root QC. We conclude that the coordinated changes in expression of auxin-, redox-, cell cycle- and metabolism-associated genes suggest the linkage of gene networks at the level of transcription, thereby providing additional insights into events likely associated with root stem cell niche establishment and maintenance

    Human Metapneumovirus Inhibits IFN-β Signaling by Downregulating Jak1 and Tyk2 Cellular Levels

    Get PDF
    Human metapneumovirus (hMPV), a leading cause of respiratory tract infections in infants, inhibits type I interferon (IFN) signaling by an unidentified mechanism. In this study, we showed that infection of airway epithelial cells with hMPV decreased cellular level of Janus tyrosine kinase (Jak1) and tyrosine kinase 2 (Tyk2), due to enhanced proteosomal degradation and reduced gene transcription. In addition, hMPV infection also reduced the surface expression of type I IFN receptor (IFNAR). These inhibitory mechanisms are different from the ones employed by respiratory syncytial virus (RSV), which does not affect Jak1, Tyk2 or IFNAR expression, but degrades downstream signal transducer and activator of transcription proteins 2 (STAT2), although both viruses are pneumoviruses belonging to the Paramyxoviridae family. Our study identifies a novel mechanism by which hMPV inhibits STAT1 and 2 activation, ultimately leading to viral evasion of host IFN responses
    corecore