3,228 research outputs found

    Observation of vortices and hidden pseudogap from scanning tunneling spectroscopic studies of electron-doped cuprate superconductor Sr0.9La0.1CuO2Sr_{0.9}La_{0.1}CuO_2

    Get PDF
    We present the first demonstration of vortices in an electron-type cuprate superconductor, the highest TcT_c (= 43 K) electron-type cuprate Sr0.9La0.1CuO2Sr_{0.9}La_{0.1}CuO_2. Our spatially resolved quasiparticle tunneling spectra reveal a hidden low-energy pseudogap inside the vortex core and unconventional spectral evolution with temperature and magnetic field. These results cannot be easily explained by the scenario of pure superconductivity in the ground state of high-TcT_c superconductivity.Comment: 6 pages, 4 figures. Two new graphs have been added into Figure 2. Accepted for publication in Europhysics Letters. Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    Scanning tunneling spectroscopic evidence for magnetic field-induced microscopic orders in the high-TcT_c superconductor YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    We report spatially resolved tunneling spectroscopic evidence for field-induced microscopic orders in a high-TcT_c superconductor YBa2Cu3O7δ\rm YBa_2Cu_3O_{7-\delta}. The spectral characteristics inside vortices reveal a pseudogap (VCOV_{\rm CO}) larger than the superconducting gap (Δ_SC\Delta\_{\rm SC}) as well as a subgap (Δˆ\Delta\^{\prime}) smaller than Δ_SC\Delta\_{\rm SC}, and the spectral weight shifts steadily from ΔSC\Delta_{\rm SC} to VCOV_{\rm CO} and Δˆ\Delta\^{\prime} upon increasing magnetic field. Additionally, energy-independent conductance modulations at 3.6 and 7.1 lattice constants along the Cu-O bonding directions and at 9.5 lattice constants along the nodal directions are manifested in the vortex state. These wave-vectors differ fundamentally from the strongly dispersive modes due to Bogoliubov quasiparticle scattering interferences and may be associated with field-induced microscopic orders of pair-, charge- and spin-density waves.Comment: Paper updated and accepted for publication in Europhysics Letters. 4 figures and 6 pages. Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    Annular substructures in the transition disks around LkCa 15 and J1610

    Get PDF
    We present high resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and J1610. These disks host dust-depleted inner regions, possibly carved by massive planets, and are of prime interest to study the imprints of planet-disk interactions. While at moderate angular resolution they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60×\times40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7μ7\,\muJy beam1^{-1} rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host 3 and 2 narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We perform hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note however that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals and possibly second generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few MJupM_{\rm Jup}), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms being at the origin of the observed substructures, in particular with narrow rings generated at the edge of the CO and N2_2 snowlines.Comment: 17 pages, accepted for publication in Astronomy & Astrophysic

    Emission-Line Galaxy Surveys as Probes of the Spatial Distribution of Dwarf Galaxies. I. The University of Michigan Survey

    Full text link
    Objective-prism surveys which select galaxies on the basis of line-emission are extremely effective at detecting low-luminosity galaxies and constitute some of the deepest available samples of dwarfs. In this study, we confirm that emission-line galaxies (ELGs) in the University of Michigan (UM) objective-prism survey (MacAlpine et al. 1977-1981) are reliable tracers of large-scale structure, and utilize the depth of the samples to examine the spatial distribution of low-luminosity (MB>_{B} > -18.0) dwarfs relative to higher luminosity giant galaxies (MB_{B} \leq -18.0) in the Updated Zwicky Catalogue (Falco et al. 1999). New spectroscopic data are presented for 26 UM survey objects. We analyze the relative clustering properties of the overall starbursting ELG and normal galaxy populations, using nearest neighbor and correlation function statistics. This allows us to determine whether the activity in ELGs is primarily caused by gravitational interactions. We conclude that galaxy-galaxy encounters are not the sole cause of activity in ELGs since ELGs tend to be more isolated and are more often found in the voids when compared to their normal galaxy counterparts. Furthermore, statistical analyses performed on low-luminosity dwarf ELGs show that the dwarfs are less clustered when compared to their non-active giant neighbors. The UM dwarf samples have greater percentages of nearest neighbor separations at large values and lower correlation function amplitudes relative to the UZC giant galaxy samples. These results are consistent with the expectations of galaxy biasing.Comment: 17 pages, 4 tables, 10 figures. Accepted for publication in the Ap

    ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT) III: The interplay between gas and dust in the protoplanetary disk of DG Tau

    Full text link
    Planets form in protoplanetary disks and inherit their chemical composition. It is therefore crucial to understand the disks molecular content. We aim to characterize the distribution and abundance of molecules in the disk of DG Tau. In the context of the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT) we analyse ALMA observations of the disk of DG Tau in H2CO 3(1,2)-2(1,1), CS 5-4, and CN 2-1 at ~0.15", i.e. ~18 au at 121 pc. H2CO and CS originate from a disk ring at the edge of the 1.3mm dust continuum, with CS probing an outer disk region with respect to H2CO (peaking at ~70 and ~60 au, respectively). CN originates from an outermost disk/envelope region peaking at ~80 au. H2CO is dominated by disk emission, while CS probes also two streams of material possibly accreting onto the disk with a peak of emission where the stream connects to the disk. The ring- and disk-height- averaged column densities are ~2.4-8.6e13 cm-2 (H2CO), ~1.7-2.5e13 cm-2 (CS), and ~1.9-4.7e13 cm-2 (CN). Unsharp masking reveals a ring of enhanced dust emission at ~40 au, i.e. just outside the CO snowline (~30 au). CS and H2CO emissions are co-spatial suggesting that they are chemically linked. The observed rings of molecular emission at the edge of the 1.3mm continuum may be due to dust opacity effects and/or continnum over-subtraction in the inner disk; as well as to increased UV penetration and/or temperature inversion at the edge of the mm-dust which would cause an enhanced gas-phase formation and desorption of these molecules. Moreover, H2CO and CS originate from outside the ring of enhanced dust emission, which also coincides with a change of the linear polarization at 0.87mm. This suggests that outside the CO snowline there could be a change of the dust properties which would reflect in the increase of the intensity (and change of polarization) of continuum, and of molecular emission.Comment: 13 pages, accepted for publication on A&
    corecore