20 research outputs found

    Leveraging Spatial Metadata in Machine Learning for Improved Objective Quantification of Geological Drill Core

    Get PDF
    Here we present a method for using the spatial x–y coordinate of an image cropped from the cylindrical surface of digital 3D drill core images and demonstrate how this spatial metadata can be used to improve unsupervised machine learning performance. This approach is applicable to any data set with known spatial context, however, here it is used to classify 400 m of drillcore imagery into 12 distinct classes reflecting the dominant rock types and alteration features in the core. We modified two unsupervised learning models to incorporate spatial metadata and an average improvement of 25% was achieved over equivalent models that did not utilize metadata. Our semi-supervised workflow involves unsupervised network training followed by semi-supervised clustering where a support vector machine uses a subset of M expert labeled images to assign a pseudolabel to the entire data set. Fine-tuning of the best performing model showed an f1 (macro average) of 90%, and its classifications were used to estimate bulk fresh and altered rock abundance downhole. Validation against the same information gathered manually by experts when the core was recovered during the Oman Drilling Project revealed that our automatically generated data sets have a significant positive correlation (Pearson's r of 0.65–0.72) to the expert generated equivalent, demonstrating that valuable geological information can be generated automatically for 400 m of core with only ∼24 hr of domain expert effort

    Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of speciation in the marine realm is challenging because of the apparent absence of physical barriers to dispersal, which are one of the main drivers of genetic diversity. Although phylogeographic studies using mitochondrial DNA (mtDNA) information often reveal significant genetic heterogeneity within marine species, the evolutionary significance of such diversity is difficult to interpret with these markers. In the northwestern (NW) Pacific, several studies have emphasised the potential importance of sea-level regression during the most recent glaciations as a driver of genetic diversity in marine species. These studies have failed, however, to determine whether the period of isolation was long enough for divergence to attain speciation. Among these marine species, the cosmopolitan estuarine-dependent fish <it>Mugil cephalus </it>represents an interesting case study. Several divergent allopatric mtDNA lineages have been described in this species worldwide, and three occur in sympatry in the NW Pacific.</p> <p>Results</p> <p>Ten nuclear microsatellites were surveyed to estimate the level of genetic isolation of these lineages and determine the role of sea-level fluctuation in the evolution of NW Pacific <it>M. cephalus</it>. Three cryptic species of <it>M. cephalus </it>were identified within this region (NWP1, 2 and 3) using an assignment test on the microsatellite data. Each species corresponds with one of the three mtDNA lineages in the COI phylogenetic tree. NWP3 is the most divergent species, with a distribution range that suggests tropical affinities, while NWP1, with a northward distribution from Taiwan to Russia, is a temperate species. NWP2 is distributed along the warm Kuroshio Current. The divergence of NWP1 from NWP2 dates back to the Pleistocene epoch and probably corresponds to the separation of the Japan and China Seas when sea levels dropped. Despite their subsequent range expansion since this period of glaciation, no gene flow was observed among these three lineages, indicating that speciation has been achieved.</p> <p>Conclusions</p> <p>This study successfully identified three cryptic species in <it>M. cephalus </it>inhabiting the NW Pacific, using a combination of microsatellites and mitochondrial genetic markers. The current genetic architecture of the <it>M. cephalus </it>species complex in the NW Pacific is the result of a complex interaction of contemporary processes and historical events. Sea level and temperature fluctuations during Plio-Pleistocene epochs probably played a major role in creating the marine species diversity of the NW Pacific that is found today.</p

    Journey to the mantle of the Earth

    No full text
    Retrieving a sample of Earth's mantle has been an overarching ambition of the geoscience community for more than a century. In 1909, the Croatian meteorologist Andrija Mohorovi?i? noticed that seismic waves travelling below about 30 kilometres underground move faster than those above that depth, indicating a fundamental change in the composition and physical properties of the rocks. He had discovered the upper boundary of Earth's mantle, now known as the Mohorovi?i? discontinuity, or 'Moho' for short. This boundary marks the start of the bulk of Earth's interior, which extends from the base of Earth's crust — at 30–60 kilometres under the continents but just 6 kilometres under the thinner crust of the oceans — to the core 2,890 kilometres below

    Supersymmetry at LEP : experimental review

    No full text
    Communication to : 35th course of the International School of Subnuclear Physics : 'Highlights : 50 years later', Erice, Italy, Aug. 26 - Sept. 4, 1997SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : RP 14734 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore